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Abstract

In�uence diagrams have become a popular tool for representing and solving
complex decision-making problems under uncertainty. In this paper, we
focus on the task of building probability models from expert knowledge, and
also on the challenging and less known task of constructing utility models in
in�uence diagrams. Our goal is to review the state of the art and list some
challenges. Similarly to probability models, which are embedded in in�uence
diagrams as a Bayesian network, preferential/utility independence conditions
can be used to factor the joint utility function into small factors and reduce
the number of parameters needed to fully de�ne the joint function. A number
of graphical models have been recently proposed to factor the joint utility
function, including the generalized additive independence networks, ceteris
paribus networks, utility ceteris paribus networks, expected utility networks,
and utility diagrams. Similarly to probability models, utility models can also
be engineered from a domain expert or induced from data.
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1. Introduction

Decision-making problems based on uncertain information are composed
of four di�erent elements: (1) a sequence of decisions to be made; (2) a
set of uncertain variables described by a probability model; (3) decision
maker's preferences for the possible outcomes described by a utility model;
and (4) some information constraints on what uncertainties can and cannot
be observed before a decision has to be made. All of these elements can
be graphically represented by in�uence diagrams (IDs), see [48]. Nowadays,
IDs have become a popular and standard modeling tool for decision-making
problems. As pointed out in a recent special issue of the journal Decision
Analysis devoted to IDs, these models �command a unique position in the
history of graphical models� [77].

IDs are directed acyclic graphs with three types of nodes: (1) decision
nodes (rectangular) representing decisions to be made; (2) chance nodes (oval
or elliptical) representing uncertainties modeled by probability distributions;
and (3) value nodes (diamond-shaped) without children (direct successors),
representing the (expected) utilities that model decision-maker's preferences.
The arcs have di�erent meanings depending upon which node they are di-
rected to: the arcs to chance nodes or the value nodes indicate probabilistic
dependence and functional dependence, respectively, while the arcs pointing
at a decision node indicate the information known at the time of making
that decision. The former are called conditional arcs while the latter are
called informational arcs. Informational arcs are related to the information
constraints mentioned above.

Therefore we can distinguish two levels in an ID: qualitative and quan-
titative. The qualitative (or graphical) level has a requirement: there must
be a directed path comprising all decision nodes. This ensures the de�nition
of a temporal sequence (total order) of decisions and it is called sequenc-

ing constraint. As a consequence, IDs have the �no-forgetting� property: the
decision maker remembers the past observations and decisions. At the quan-
titative level, an ID speci�es the domains of all decision and chance nodes.
A conditional probability table is attached to each chance node consisting of
conditional probability distributions, one for each state of its parents (direct
predecessors). The utility functions (real-valued functions) quantify the de-
cision maker's preferences for outcomes and will be attached to value nodes.
They are de�ned over the states of the value node's parents. If several value
nodes are present, then each represents an additive factor of the joint utility
function.

Figure 1 shows an example of the graphical part of an ID. D1 and D2
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are decision nodes; A, C and R are chance nodes; and υ1, υ2, and υ3 are
value nodes. υ1 is a function of the states of D1, υ2 is a function of the
states of D2 and A, and υ3 is a function of the states of D2 and C. The
joint utility function is the pointwise sum of υ1, υ2 and υ3. As in a Bayesian
network, the arcs directed to chance nodes like R mean that the conditional
probability attached to R is given by P (R|D1, A). Finally, since there are
no informational arcs directed to D1, nothing is known when a decision at
D1 has to be made. The informational arcs (D1, D2) and (R,D2) directed
to D2 mean that at the time a decision at D2 has to be made, we know the
outcome of R and the decision made at D1. The informational arc (D1, D2)
is also called a no-forgetting arc, and it can be deduced from the fact that
there is a directed path from D1 to D2.

υ2

C

υ3υ1

D1 D2R

A

Figure 1: An in�uence diagram

Evaluating an ID means computing a strategy with the maximum ex-
pected utility. This strategy consists of a policy for each decision node. A
policy for decision node Di is a function δDi that associates each state of
Di's parents with a state dj of Di, that results in the maximum expected
utility:

δDi : xpa(Di) → dj (1)

The evaluation algorithms take advantage of the independencies among
the ID variables. The dependencies and independencies appear naturally
during the construction of the model and are represented by arcs and absence
of arcs respectively. The absence of an arc among two variables represents
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their mutual independence. Therefore the removal of a link in order to
simplify the model may lead to a wrong picture of the decision problem
under examination. As it happens while building any model, a tradeo�
between simplicity and expressivity is needed.

Olmsted [70] described a method to solve IDs. Shachter [83] published
the �rst ID evaluation algorithm. After that, several algorithms based on
variable elimination strategies or on clique-trees approaches may be now
used to solve IDs [22, 86, 50, 85, 94, 62]. Computational issues related to
ID evaluation are beyond the scope of this paper. Some critical di�culties
and their solutions are discussed and exempli�ed in [37, 4], where a large
ID, called IctNeo, models neonatal jaundice management for an important
public hospital in Madrid.

IDs have an enormous potential as a tool for modeling uncertain knowl-
edge. The process of building an ID itself provides a deep understanding
of the problem, and ID outputs are remarkably valuable. Given a speci�c
con�guration of variables, an ID yields the best course of action. But ID
responses are not limited to providing optimal strategies for the decision-
making problem. Inferred posterior distributions may be employed to gen-
erate diagnosis outputs (probabilities of each cause). IDs may also auto-
matically generate explanations of their proposals as a way to justify their
reasoning [30]. The domain expert may formulate a more di�cult query,
without specifying all the variables required to determine the optimal deci-
sion, leading to imprecise responses that should be re�ned if we want the
decision maker to be satis�ed [29]. Reasoning in the reverse direction, as-
suming that the �nal results of the decisions are known, the ID can be used
to generate probabilistic pro�les that �t these �nal results (answering ques-
tions like �which kind of patients receive this speci�c treatment?�). Also, the
computation of the expected value of information have shown to play a vital
role in assessing the di�erent sources of uncertainty [84].

The aforementioned special issue of Decision Analysis devoted to IDs
is a sign of the lively interest in IDs. Boutilier [10] discusses the profound
impact that IDs have had on arti�cial intelligence. As a professional deci-
sion analyst, Buede [15] reports on the value of IDs for tackling challenging
real decision problems and considers IDs almost as indispensable as a lap-
top computer. Pearl [77] recognizes the signi�cant relevance of IDs but he
underscores some limitations. First, due to their initial conception with em-
phasis on subjective assessment of parameters, econometricians and social
scientists continued using traditional path diagrams where parameters were
inferred from the data itself. Second, arti�cial intelligence researchers, with
little interaction with decision analysis researchers at that time (early 1980s),
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established conditional independence semantics through the d-separation cri-
terion developing competitive computational tools. Thus, although IDs are
informal precursors to Bayesian networks, the former had a milder in�uence
on automated reasoning research than the latter. Finally, Pauker and Wong
[75] consider that IDs have disseminated slowly in the medical literature ([74]
and [66] are two papers analyzing the use of IDs for structuring medical de-
cision problems), compared to the dominating model of decision trees, the
reasons remaining unclear.

In a separate paper, we concentrate on the qualitative graphical structure
of a decision problem including information constraints [5]. Here, we concen-
trate on the construction of a utility model and review some lesser known
issues about constructing probability models. In constructing a probabil-
ity model, we need to identify the relevant chance variables, the qualita-
tive structure of conditional independencies between the chance variables,
and the quantitative parameters of the joint probability distribution of all
chance variables that respects the conditional independence relations among
the variables. This part of an ID is also called a Bayesian network (BN).
When we have a large set of variables, constructing a BN model of the un-
certainties can be a challenge.

One way to construct a BN model is by knowledge engineering using a
domain expert. The domain expert can identify the relevant uncertainties,
the structure of conditional independencies among the variables, and �nally
the numerical parameters of the joint distribution. To facilitate the knowl-
edge engineering, we describe the SRI protocol developed by the Decision
Analysis group at Stanford University. We also describe some methods for
reducing the number of parameters needed to fully describe a joint probabil-
ity distribution. If the conditional distribution of a binary chance variables
has n parents, say with 2 states each, then the number of parameters needed
is 2n. However, if there are no interactions among the n parents, we can
reduce the number of parameters of the conditional distribution to o(n). We
describe some techniques such as divorcing parents and noisy-OR models
that have been proposed in the literature.

Another way to induce a BN model is from data. In the last two decades,
there has been an explosion of techniques in the machine learning community
to learn BN models from data and these techniques are rather well-known
and will not be reviewed here. In practice, a combination of expert knowledge
and data are used to construct a BN model.

Construction of a utility model is as challenging as constructing a proba-
bility model, if not more. Again, this can be done with the help of a domain
expert or from a data set, assuming one is available. The task consists of
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describing the objectives in terms of a hierarchy of sub-objectives, de�ning
a measurement scale for each sub-objective, and seeking a structure using
preferential/utility independence conditions to minimize the number of pa-
rameters of a joint utility function. In recent years, a number of graphical
models have been proposed to factor the joint utility function into small fac-
tors. These include the generalized additive independence (GAI) networks,
ceteris paribus (CP) networks, utility ceteris paribus (UCP) networks, ex-
pected utility networks (EUNs), and utility diagrams.

Pairwise-comparison is another way to elicit expert judgments (both
probabilities or preferences). However, this technique is not of practical
use when assessing a high number of parameters. This will be explained in
the sections devoted to constructing probability and utility models.

The paper is organized as follows. Section 2 reviews lesser known tech-
niques for constructing probability models using expert knowledge. Section
3 reviews techniques for constructing utility models. We focus on standard
techniques (section 3.1), factorization techniques based on a graphical utility
model (section 3.2), and data-driven techniques (section 3.3). Finally, in sec-
tion 4, we conclude with a summary and a discussion of issues not discussed
in this paper.

2. Probability Model Construction Using Expert Knowledge

The process of building a BN involves three closely related tasks: identi-
fying the relevant variables for the domain under analysis, determining the
relationships between these variables, and assessing the conditional proba-
bilities in order to quantify the relationships. These three tasks are not orga-
nized as a single sequential procedure. Instead, work on any one of them may
lead to a reconsideration of previous decisions of the others. Therefore, in-
cremental prototyping is usually considered as the ideal development model
to follow for building BNs (and IDs) [58]. Prototypes are re�ned step by step
as long as more knowledge and time are available. A main guideline for this
iterative process is the trade-o� between the desire for a rich and complex
model on one hand and the e�ort and costs of development, maintenance,
and evaluation on the other [26].

The task of determining the relevant variables and their relations from
domain experts are comparable to some extent to knowledge engineering
for other arti�cial intelligence representations. Although it requires a lot of
e�ort, it is not the main di�culty. IDs and BNs o�er a clean graphical repre-
sentation to experts making them easy to reason about the domain problem,
by adding new variables or changing relations, as long as the model gets
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more re�ned and detailed. However, obtaining numerical probabilities and
preferences is a more di�cult task, see [26]. Data about the domain (liter-
ature, databases, etc.) do not usually include all the required information.
When available, it is not directly amenable for quantifying the parameters
of the probabilistic and preference relations. Therefore, a substantial part of
the work is based on the knowledge and experience of human experts. But
the assessment of numerical parameters from experts is considered a di�cult
and unreliable task as well.

With this in mind there are two scenarios to be considered in probability
assignment: without enough data about the problem, where the model con-
struction must be done manually with the help of human experts; and if a
comprehensive data collection is available, where the construction of the ID
(both qualitative and quantitative levels) can be performed automatically.
These two scenarios are two extreme situations. In real-world problems, both
of them�knowledge engineering and data� can be combined to some extent:
part of the structure (or parameters) may be learned from data, and the rest
added with the aid of human experts. Here we will only focus on construct-
ing models using domain experts since model construction from data is well
known and documented in many textbooks, see, e.g., [51].

The problems encountered when directly eliciting probabilities from ex-
perts are revealed with the help of well-documented experiments [53]. These
experiments have shown that subjective probability judgement is driven by
several heuristics:

• Availability of information: the ease with which experts can think
about previous occurrences of the event. As certain events may be
easier to recall than others, the use of this heuristic introduces a bias
in the assessments.

• Representativeness: people usually focus the attention on speci�c de-
tails ignoring background information. For example, people judge the
sequence of coin tosses HTHTTHTH as more likely than HTHTHTHT,
while both of them are equally probable.

• Anchoring the adjustment: a natural starting point is selected as a �rst
approximation to the value of the quantity being estimated and then
this value is adjusted when more information is available. It has been
shown that the adjustment is insu�cient and the �nal result tends to
be biased to the �rst approximation.

Also, these sources of biases do not depend on the technical skill or the
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level of expertise [90]. They are directly related to psychological mecha-
nisms used while assessing probabilities of events. Therefore, rather than
directly providing probabilities, several techniques have been employed for
the elicitation of probabilities from experts [65], and are as follows.

• Avoiding direct assessment and using indirect methods, in which the
decision maker chooses between bets without an explicit mention of
probabilities. This method was initially designed for utility elicitation
[81]. When the method is used for probability elicitation the expert
is asked to compare each pair of events indicating the relative likeli-
hood of both of them using a set of prede�ned scores (like both events
are equally likely, the �rst is weakly more likely than the second, etc).
With this method the experts are not required to explicitly state prob-
abilities, but as a consequence the number of comparisons to perform
exceeds, by far, the number of parameters to assess. For assessing the
probability distribution of a variable with n states, n − 1 parameters
are required (for every con�guration of the parent variables, in the case
of a conditional probability distribution). However, when comparing
pairs of events, n(n− 1)/2 comparisons must be done for each state of
the parent variables.

• Conceptualizing and assessing probabilities, using visual devices like
urns with colored balls, and probability wheels, have been widely used
in practical elicitation processes.

• Expressing probabilities qualitatively using words and phrases such as
very possible and almost impossible just because most people �nd it
easier to express probabilities qualitatively. However, there is evidence
that di�erent people associate di�erent numerical probabilities to these
labels even when focused on the same domain context. Despite this
drawback, this approach has been e�ectively used for the development
of real-world models, see [32, 33].

• Asking the experts for intervals of probabilities instead of single values
[31]. Although this simpli�es the assessment phase, computing optimal
policies with imprecise probabilities becomes a more complex task.

All of these techniques reveal the di�culty of this task, especially for
the development of decision support systems for real-world problems. This
has promoted the design of formal protocols focused on giving assistance
and guidelines to such a complex process. Another strategy is to reduce the
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number of parameters to be assessed. And this can be achieved with several
techniques. One of them is to apply certain re�nements that result in models
with fewer parameters. Another is to state constraints between the variables
of the model. Such constraints are clearly de�ned with qualitative terms,
and can help in reducing the number of parameters. All of these issues will
be examined in the subsequent sections.

2.1. SRI Protocol

The objective of a protocol is to avoid biases induced in subjective judge-
ments using unsuitable heuristics. The protocol o�ers guidelines to perform
interviews with experts and recommends a formal procedure. Although there
are several protocols, the Stanford Research Institute (SRI) protocol [44], is
the most in�uential one. It was developed by the Decision Analysis group
in the Department of Engineering and Economic Systems at Stanford Uni-
versity. The protocol recommends organizing the interviews through �ve
phases:

• The motivation phase is focused on developing some initial rapport
with the expert, discussing the reasons for the elicitation. In this stage
it must be considered whether experts have any motivation to provide
assessments that do not re�ect their true beliefs.

• Structuring the uncertain quantity to be elicited, establishing a clear
and unambiguous de�nition stated in a form in which the experts will
most likely be able to provide reliable judgements.

• Conditioning the experts in order to get them focused on thinking
about their judgements and to avoid cognitive biases.

• Encoding of expert probabilistic judgements.

• Verifying the quantitative judgements to check if it correctly re�ects
their beliefs. This can be done by visualizing the obtained distribution,
or testing the answers with the aid of bets.

If this protocol is followed, the time required can be as much as thirty
minutes per parameter [25]. This is unfeasible for models with a big num-
ber of parameters, and networks typically comprise of hundreds of variables
and thousands of parameters. Therefore, alternative techniques must be
employed for quantifying probabilistic relations.
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2.2. Model Re�nements

The number of parameters required for quantifying a probabilistic rela-
tion depends on the number of variables involved in it. Simpler relations will
lead to smaller sets of parameters. Sometimes an important simpli�cation
can be obtained by divorcing the parents of a given variable. For a concrete
example, consider a medical problem with several phases of treatments. The
ECost variable represents the total cost of a certain treatment. It consists
of the sum of the partial costs due to each treatment stage, see Figure 2.
The set of states for ECost is {very low, low, medium, high, very high}.

Treatment1 Treatment2 Treatment3 Treatment4 Treatment5

ECost

Figure 2: Initial model: direct accumulation of costs

With the structure in Figure 2 there is a conditional probability distri-
bution involving 6 nodes: the global economical cost and the �ve treatment
decisions. Suppose that each treatment decision has three possible states.
Then, the number of parameters to be assessed is 972(= 35 × (5− 1)). But
this model can be re�ned in order to reduce this number assuming there are
no interactions among the cost of the �ve treatments. The sum can be done
stepwise adding one treatment in each step, creating new variables for the
partial sums, and separating the treatments. The new structure is shown in
Figure 3.

Treatment2 Treatment3 Treatment4 Treatment5Treatment1

ECost123 ECostECost12 ECost1234

Figure 3: Re�ned model: partial accumulation of costs
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This re�ned model introduces three new variables for representing the
costs after each step. Now we need to obtain the parameters for the following
probability distributions:

• P (ECost12|Treatment1, T reatment2), quantifying the costs due to
the �rst two stages: it requires 36(= 32 × (5− 1)) parameters.

• P (ECost123|ECost12, T reatment3), adding the cost of the third stage:
60(= 3× 5× (5− 1)) parameters.

• P (ECost1234|ECost123, T reatment4): 60 parameters.

• P (ECost|ECost1234, T reatment5), global cost: 60 parameters.

This alternative structure needs only 216 parameters, which is a big
reduction from the initial number of parameters (972).

2.3. Exploiting Constraints

When there are constraints that exclude certain states of a variable, the
number of assessments can be reduced. To illustrate this, consider the re-
�ned model shown in Figure 3. Since this model represents a situation
where costs from the �ve treatments are added, assuming that the costs are
always positive, the cost at step i cannot decrease at step i + 1. That is,
once a certain level of cost is reached, then lower levels are not allowed for
later steps. This obvious constraint can be used to reduce the number of
parameters to assess. This is illustrated in Figure 4 where each cell rep-
resents a combination of values for ECosti and ECosti+1. Only 15 out of
the 25 possible combinations need be considered (allowed combinations are
shown as non-shaded cells). For example, when assessing the distribution
P (ECost123|Treatment3, Ecost12) the experts will not be asked about the
parameters for constrained con�gurations.

Therefore the last three variables, ECost123, ECost1234 and ECost, will
be completely de�ned with the assessment of only 30(= (15−5)×3) param-
eters. This results in a �nal overall requirement of 126 parameters. Con-
straints can also be used during the evaluation stage to make the solution of
an ID more e�cient by avoiding computations of impossible scenarios.

In problems representing a sequence of decisions use to be constraints
between the available alternatives at each stage. Suppose a typical sequence
of treatments as the one included in Fig. 4. Maybe the �rst decision contains
alternatives which determine the available choices for posterior decisions.
If the �rst decision considers the admission to the hospital (yes, no), the
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ECost
i+1

high

medium

Figure 4: Cells in white contain the admitted values for ECosti+1 given ECosti

value no restricts the possible states for posterior decision variables. This
knowledge must be employed in order to reduce the number of parameters
to assess as much as possible.

In fact there are several kinds of qualitative information about a rela-
tionship. In the example above, we have some constraints on the set of
states of the variables. But we could also have constraints on the kinds of
interactions between the variables. For example, when a variable is consid-
ered as an e�ect and their parents as the causes, the causal mechanism can
be constrained to, e.g., noisy-OR, noisy-AND and their generalizations, see
[76, 42, 87, 24, 78, 41]. The number of parameters needed to be assessed
is substantially reduced with these models and the rest can be easily de-
rived using some rules. For example, the noisy-OR model for binary-valued
variables [42] assumes that each cause has an activation probability pi of pro-
ducing the e�ect X in the absence of all other causes, and the probability
of each cause being su�cient is independent of the presence of other causes.
The only probabilities required to be assessed are pi, i.e., the probability of
X given that all but one cause i are absent. From these assessments, it is
easy to derive the probability of X given any combination of values for X's
parents. This has been applied to several real-world applications related to
medical problems where the cause-e�ect relation is very common. Several
examples can be found in [8, 71, 72, 37]. In this last reference, we applied
all the mechanisms explained in this section for a neonatal jaundice problem
achieving a substantial reduction in the number of probabilities to be as-
sessed (97.83% for one of the distributions and a global reduction of 77.27%
for the whole set of probabilistic parameters).
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3. Utility Model Construction

Following the construction of a probability model, the acquisition of
quantitative information for an ID is complete after assessing the utility func-
tion that represents the decision maker's preferences for the outcomes. Prob-
ability assignment in BNs rely on the multiplicative decomposition of the
joint probability distribution function into small factors. By contrast, utility
elicitation is innately harder and thereby an obstacle to the deployment of
decision-support and decision-automation systems. Many approaches still
try to work with a subclass of utility functions that also decompose into
components de�ned over smaller sets of variables. However, many di�cul-
ties arise:

• very di�erent results when elicitation techniques are applied to the
same person

• inconsistent answers to the elicitation questions

• the need to be trained before starting to answer these (often hard)
questions

• a very large outcome space in real-life decision problems

As mentioned for probability model construction, the pairwise compar-
ison method cannot be used in these problems. For example, the utility
function for the decision problem described in [37] needs 5400 parameters
to be assessed. With a pairwise comparison method,

(
5,400

2

)
= 14, 577, 300

comparisons would need to be done.
Similar to probability assignment, utility assignment methods can also

be categorized as manual or as learned-from-data types or as a mix of both.
However, we present here a more detailed categorization through the follow-
ing subsections.

3.1. Standard Methods

Manual methods involve human domain experts who start a standard
elicitation protocol in multi-attribute utility theory by describing the objec-
tives hierarchy with the attributes and their respective measurement scales
[57]. The overall objective is located at the root of the hierarchy. By subdi-
viding the objectives into more detailed lower-level objectives, the intended
meaning of the overall objective is clari�ed. Objectives are repeatedly tested
for importance before inclusion in the hierarchy, asking the experts if they
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feel the best course of action could be altered if that objective was excluded.
The objectives tree is checked according to suitability criteria. An objectives
hierarchy for the jaundice problem is shown in Figure 5, where both doctors
and parents took part in its construction [37]. The process is a creative task,
although several aids, like information gathering, are of signi�cant help in
articulating objectives.

economical
cost

social
cost

emotional
cost

risk of being
admitted

due to
treatment

due to
hyperbil.

baby−mother
separation injuries

global well−being

effects
direct intangible

effects

AttributesX1 X2 X3 X4 X5 X6

Figure 5: An objectives hierarchy for the jaundice management problem

For each of the lowest-level objectives, an attribute and a measure-
ment scale are then identi�ed to indicate the extent to which objectives
are achieved. Some advice for this task may be found in [56]. Scales may be
objective (as money for X1 in Figure 5) or subjective (as an ad hoc scale for
X2). The attributes are sub-value nodes to be added to the ID pointing to
the overall super-value node.

Next, a utility function u(x1, x2, ..., xn) over the n attributes has to be
assessed, where xi designates a speci�c level of Xi. A direct assessment of u
has major practical shortcomings because too many parameters are required.
Therefore, typically various sets of independence assumptions about decision
maker attitudes to risk are investigated, to derive a functional form of the
multi-attribute utility function consistent with these assumptions. These
assumptions are mainly preferential independence and utility independence

conditions. This is checked in a dialogue process with the experts, asking
them questions related to preference order for lotteries involving changes in
the attribute levels. Typical forms for u are additive and multiplicative.
Finally, the component utility functions and their scaling constants have to
be assessed. This is carried out by standard procedures like the probability
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or certainty equivalence method for utilities [27], and the trade-o� method
for the constants [57].

Obviously, this elicitation process may lead to biases (in the sense of vi-
olations of the expected utility axioms) and inconsistencies, see e.g., [43, 63,
52, 49, 82, 35]. This has generated much research contributing to de�ning
the expected utility theory as a prospective model [54], rather than as de-
scriptive or normative, which is beyond the scope of this paper. The use of
several methods to ask the expert, �nally reaching a consensus from all the
answers is recommended. Alternative ideas include uncertainty about the
decision-maker's preferences, which leads to a class of utility functions [6].
Nonetheless, this approximation based on a functional form of the multi-
attribute utility o�ers a satisfactory solution in regard to the size of the out-
come space, facilitating the overall elicitation which is broken into smaller
pieces of information.

3.2. Separable Utilities

The independence assumptions from multi-attribute utility theory help
preferences be speci�ed in a concise way, whenever these exhibit su�cient
structure. A separable structure of the utility function may be directly rep-
resented in an ID through multiple value nodes that are aggregated as sum
or products into super-value nodes [89]. These make the elicitation eas-
ier and simplify computations during the evaluation phase. However, the
sums/products structures of [89] should only be used after verifying that the
corresponding independence conditions hold.

Other graphical models exist to exploit the structure for utilities. First,
Bacchus and Grove [2, 3] propose an undirected graph that captures condi-
tional additive utility independencies. Assuming these conditions, the under-
lying utility function u is additive, i.e. u is a sum of factors de�ned over sets
of variables that are not necessarily disjoint. These models are called gener-

alized additive independence (GAI) models, and are e�ective for dominance
testing, i.e., for determining whether a possible outcome (a con�guration of
the variables) has higher utility than another. A general algorithm for elic-
iting GAI-models is found in [38]. They introduce GAI-networks, which are
similar to the junction graphs in BNs.

Second, CP-nets of Boutilier et al. [12] are a directed acyclic graph
that captures conditional preferential independence statements. These are
qualitative preference orderings under a ceteris paribus (all else being equal)
assumption. A conditional preference table is associated with each node X.
It speci�es a preference order over X's values given each instantiation of its
parents pa(X), and given pa(X), X has to be conditionally preferentially
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independent of the rest of variables. Therefore, parents of a node X are
those variables that a�ect decision maker's preference over the values of X.
For example, Figure 6(a) shows a CP-net de�ned over binary variables. The
table for C speci�es that c is preferred to c̄ when a and b hold ceteris paribus,
i.e., abcd � abc̄d ⇐⇒ abcd̄ > abc̄d̄, where � is a total preorder over the
set of outcomes. Such statements do not require complex introspection nor
a quantitative assessment. CP-nets are e�ective for outcome optimization
queries, i.e., for determining what outcome has maximum utility given some
partial assignment.

Figure 6: (a) A CP-net and (b) a UCP-net

Third, UCP-nets of Boutilier et al. [11] are an extension of CP-nets
that represent quantitative conditional utility information rather than simple
preference orderings. The utility function is decomposed as a GAI-model
where each factor is de�ned over each variable and its parents. Therefore,
UCP-nets take the advantages of both GAI-models and CP-nets. Figure 6(b)
is a UCP-net that extends the CP-net on the left with utility information. We
interpret that u(A,B,C,D) = f1(A) + f2(B) + f3(A,B,C) + f4(C,D). This
is added to the (now quantitative) conditional preference tables of each node
to provide a full speci�cation of the utility function. For example, we have
that u(a, b, c, d̄) = f1(a)+f2(b)+f3(a, b, c)+f4(c, d̄) = 4+6+ .6+ .7 = 11.3.
f3 speci�es the utility of C given A and B. Utility assessment is simpli�ed
because each node is isolated from the rest of the network given the values
of its parents. To compute the optimal action, we can construct an ID by
adding one value node for each factor fi in the UCP-net, with parents both
i and the parents of i in the UCP-net. Then, variable elimination may be
used to �nd the optimal action, see [11].
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CP-nets have stimulated other research in several directions. For exam-
ple, the recent tradeo�-enhanced CP-nets or TCP-nets, [14], extend CP-nets
by introducing conditional relative importance statements between pairs of
variables. These have the form: �A better assignment for X is more impor-
tant than a better assignment for Y given that Z = z0�. The authors put
this example: �The length of the journey is more important to me than the
choice of airline if I need to give a talk the following day. Otherwise, the
choice of airline is more important�. Other extensions are [64, 92, 13].

Expected utility networks (EUNs) [60] are directed (or undirected) graphs
with two types of arcs representing probability and utility dependencies, re-
spectively. The probability layer is a Bayesian (or Markov) network. For
utilities, a novel notion of conditional expected utility independence is de-
�ned. Node separation with respect to the utility subgraph implies this new
notion of independence. An example of an EUN for a second price (�Vick-
rey�) auction from the perspective of Agent 1 is shown in Figure 7 (adapted
from [60]). In this �gure, V1 and V2 are the values of the good for Agents
1 and 2, respectively, B1 and B2 are the bid values of Agents 1 and 2, re-
spectively, and A is the �nal allocation, which is a pair a = (g,m) denoting
who gets the good (g = 1, 2) and how much must be paid for it (m). The
probability layer is represented as a Bayesian network shown using solid arcs,
and the utility layer is shown using a dashed arc. The functional form for
Agent 1's utility is as follows:

u(a|v1) =
{ 1+v1

1+v2
ifg = 1

1 otherwise

Other more recent approaches [1] focus on a class of multi-attribute util-
ity functions called attribute dominance utility. Thus, a two-attribute domi-
nance utility function ud(x, y) satisfy mutual preferential independence and
also is a minimum (least preferred) if either of the attributes is a minimum:

ud(xmin, ymin) = ud(xmin, y) = ud(x, ymin) = 0,
∀x ∈ [xmin, xmax], y ∈ [ymin, ymax]

((xmin, ymin) and (xmax, ymax) are the least and the most preferred conse-
quences, respectively). Therefore, any attribute set at a minimum domi-
nates the remaining attributes and sets the multi-attribute utility function
to a minimum. This attribute is called a utility-dominant attribute. The
last requirement appears in many applications of decision analysis practice,
for example, decisions involving life-and-death situations where any of the

17



A

B2

V2V1

B1

p(v1)
u(v1)

p(v2)

p(b2|v2)

p(a|b1, b2)

p(b1|v1)

u(a|v1)

Figure 7: An expected utility network for the second price auction with two bidders from
the perspective of Agent 1

attributes (i.e. health state) when set below a certain minimum will result in
a not desirable consequence that pushes the utility function to a minimum.

The class of attribute dominance utility functions shares similar math-
ematical properties as those of joint cumulative probability distributions.
For this class, the marginal utility function over a single attribute X is
de�ned as the utility function when all other attributes are set at their max-
imum values, i.e. ud

X(x) = ud(x, ymax), which is itself an attribute domi-
nance utility function. A conditional utility function for attribute domi-
nance utility functions is de�ned as the normalized utility function for one
attribute when we are guaranteed a �xed amount of the other attribute, i.e.

ud
Y |x(y) = ud(x,y)

ud
X(x)

, x 6= xmin. Utility independence of two utility-dominant

attributes x and y are de�ned accordingly: ud
X|y(x) = ud

X(x), and similarly,
conditional utility independence. These de�nitions, extended to several at-
tributes, allow to derive analogs of chain and Bayes' rules for attribute domi-
nance utility functions. For example, the �Bayes' rule� for utility inference is

ud
X|y(x) =

ud
Y |x(y)ud

X(x)

ud
Y (y)

, y 6= ymin, that expresses that our state of preference

can change if we receive information (e.g. we realize that an attribute can
be harmful), or a new degree of other attribute (a new wealth can change
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our risk aversion for money). The chain rule allows constructing these util-
ity functions using marginal-conditional utility assessments analogous to the
approach followed for joint probability distributions. Copula methods [67],
that uses marginal functions, can also be used. This way of constructing
the multi-attribute utility function avoids making explicit trade-o�s between
attributes, which may be di�cult especially in medical decision-making or
life-and-death situations.

Abbas and Howard [1] propose a directed acyclic graph called utility

diagram to compactly represent the utility dependence relations between
utility-dominant attributes. Figure 8 shows a simple example for two at-
tributes, adapted from [1]. The arrow represents the possibility of utility
dependence between them given our current state of preferences.

X Y

ud
X(x) ud

Y |x(y)

ud(x, y) = ud
X(x)ud

Y |x(y)

Figure 8: Utility diagram with dependence of two utility-dominant attributes

Y is the health state of a patient undergoing a cancer treatment and
deciding whether to have chemotherapy or radiotherapy. X is the consump-
tion levels (wealth). Both scales for Y and X, measured by the quality of
life and millions of dollars, respectively, are normalized from 0 to 1. When
any of these attributes has a minimum value, the patient preferences indi-
cate that the resulting consequence is the least preferred. Thus, the multi-
attribute utility function is attribute dominance. Now we can start by as-
sessing the marginal utility function for wealth, that is assumed to be risk
neutral: ud

X(x) = x, x ∈ [0, 1]. Then we asses the conditional utility function
for quality of life given wealth, that is assumed to be risk averse depending

on the value of wealth, given by: ud
Y |x(y) = 1−e

− 1
0.3+x y

1−e
− 1

0.3+x
, x, y ∈ [0, 1]. The

multi-attribute utility function is derived by multiplying both functions:

ud(x, y) = ud
X(x)ud

Y |x(y) =
x(1− e− 1

0.3+x
y)

1− e− 1
0.3+x

, x, y ∈ [0, 1].

Utility independence relations may be derived graphically with utility
diagrams and it greatly simpli�es the elicitation process. Conditional utility
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independence is represented in the same manner than for probability func-
tions. Arc reversals can also be used to change the assessment order into
one that is more comfortable to the decision maker. Utility diagrams help
us think our utility values, change the order of utility assignments and verify
the assessments and utility independence assumptions made.

These easier-to-elicit functions should encourage us to reformulate the
attributes, whenever possible, to generate attribute dominance utility func-
tions. Although sometimes attribute dominance conditions may not exist for
all the attributes, Abbas and Howard [1] discuss extensions to have more gen-
eral utility functions with at least one non-utility-dominant attribute. These
functions will require the mutual preferential independence assumptions but
will not require the assumption of utility independence between attributes.
Moreover, any multi-attribute utility function with preferential independence
can be decomposed into smaller structures with the same mathematical prop-
erties as attribute dominance utility functions.

All these graphs try to provide factored representations of decision mak-
ers' preferences with the �nal aim of supporting preference elicitation and
reasoning. The main advantage of using separable utilities is the reduction
in the number of parameters to be assessed. It also helps in having a simpler
and modulated picture of preferences to work with. The rest of di�culties
would still be present: di�erent results for the same expert, inconsistent an-
swers to the elicitation questions and the need of previous training before
facing the elicitation process. They are inherent to a process that is driven
by the decision maker, a human being, as opposed to data-driven methods.

3.3. Data-driven Methods

Learn-from-data methods belong to data-driven modeling and leave com-
puters to automatically discover the underlying elements of decision models
through data mining. This avoids the tiresome and lengthy process devel-
oped manually by the designers with their skill and experience. However,
since data usually come from experts, these methods could be considered as
semi-automatic learning. In this subsection, we describe how the objectives
hierarchy and the utility function can be learnt from data.

Suppose we have a data set of labeled decision examples. That is, each
example is described by a set of attributes and its utility. Data may come
from an existing database of past decisions or may be provided explicitly by
the domain expert. From these unstructured data, it is interesting to develop
a hierarchical structure like that of Figure 5, identifying how the attributes
(terminal nodes, given in the data set) arrange in meaningful concepts or
aggregate attributes (new internal nodes). These concepts will be described
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through small sets of examples and the hierarchy will be able to generalize
well to other cases not included in the original data set. This is carried
out in [9] using a machine learning method called function decomposition.
When human interaction is also included, the quality of the hierarchy and
accuracy of the model are shown to be improved. The method is restricted to
nominal attribute values and nominal utilities, although a possible extension
for continuous values is suggested. Therefore, valid examples for discovering
the tree of Figure 5 would be, e.g., (cheap, low, low, medium, low, low,
high), where `high' corresponds with a high utility of a case given by the
other six values `cheap',..., `low' for X1, ..., X6, respectively. Other examples
may be found in records of customer purchases, actions of a web-site's users
or routine medical decisions.

Regarding the learning of a utility function, there are several possible
approaches. A �rst group learns the utility function based on a database of
already elicited utility functions. In [40], examples may be pairwise compar-
isons, numeric ratings and answers to standard lottery questions provided
by the expert. Assumptions about preferences, such as preferential indepen-
dence, dominance, attitudes toward risk, are represented as propositional
Horn clauses that are then used to build a knowledge-based arti�cial neu-
ral network that represents decision maker's preferences. An approximate
utility function can be constructed from the network. This is a preliminary
work with some limitations in ID modeling.

Chajewska et al. [17] assume that quite often there are only a few qual-
itatively di�erent classes of utility functions in the population of decision
makers. The authors start with a database of fully-speci�ed utility func-
tions, i.e. vectors of values with one value for each possible outcome (com-
plete sequence of events). From these data, the clusters of utility functions
are identi�ed to minimize di�erences in expected utility between strategies
based on true utility functions and strategies based on a cluster's prototype.
Then a decision tree is built for classifying the utility functions into these
clusters found. This is done in such a way that given a new decision maker,
the elicitation of his utility function is avoided, since the tree contains splits
(nodes) with many fewer and simpler assessment questions than the usual
full utility elicitation. At the leaves of the tree, a suitable cluster associated
to the decision maker's utility function is found. The best strategy for this
cluster's prototype was already computed and makes up a nearly-optimal
strategy for the decision maker. This methodology only �ts small IDs since
all kind of modularity is lost: the possible strategies and sequences of observ-
able variables are enumerated and it does not take advantage of any utility
function decomposition. However, these ideas are promising if the availabil-
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ity of this kind of databases of decision maker's utility functions grows, not
only in the medical community as in [59], but also in other domains.

Chajewska and Koller [18] postulate that the population of decision mak-
ers is grouped into several disjoint subpopulations where we assume that the
utility functions are decomposed in the same (unknown and additive) way.
There is a distribution over utilities assumed to be a mixture of Gaussians.
We are given a standard database of utility functions (partially) elicited from
the population. Data come from the utilities of a number of outcomes as-
sessed in an interview. Bayesian statistical density estimation techniques are
used to learn the distribution over factored utility functions that �ts the data
well. Given a new decision maker, we compute the most probable factored
utility function. Outliers can be identi�ed and interpreted as some source of
noise that interfered with the elicitation process (perhaps fatigue).

In fact, it would be interesting to limit the number of elicitation questions
before fatigue starts. Thus, a second group of approaches iteratively re�nes
the current utility function of the decision maker. The main idea is that the
relevance of an elicitation question for a given decision problem should be
measured to determine which question is the following to ask and to minimize
the number of them. This is proposed in [20], who measure the relevance
of a question using its expected value of information and iterate the process
until the expected utility loss resulting from this recommendation fall below
a pre-speci�ed threshold. Expectation is taken with respect to the current
distribution over utility functions, estimated as in [18].

Finally, a third group of approaches learns the utility function based on a
database of observed behavioral patterns (or observation-decision sequences).
They assume that the �true� utility function is re�ected in the observed
behavior. The observations are used to formulate a set of constraints on
the space of possible utility functions. Standard learning algorithms [19, 88]
also assume that the decision maker is behavioral consistent, i.e. given a
decision model, there exists a utility function which can account for all the
observed behavior. Recent learning algorithms [69] relax this consistency
assumption, rarely valid in real-world problems, interpreting inconsistent
behavior as random deviations from an underlying true utility function. The
latter algorithms may accommodate situations where the decision maker's
preferences change over time.

Regards the four main di�culties mentioned above, data-driven methods
solve some of them. If the database of already elicited utility functions has
been obtained from an expert, then the drawbacks of having di�erent results
for the same expert and inconsistent answers are inherited in the database.
Therefore, the database should be �cleaned� from this e�ect before launching
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a data-driven method. However, the methods that avoid the elicitation of the
utility function, which is classi�ed into clusters/subpopulations from a few
questions or learnt from observed behavioral patterns and constraints, do not
su�er from those disadvantages. Also, obviously, the automatic computation
of the parameters allows to deal with large outcome spaces whenever enough
data are available.

4. Discussion

Knowledge acquisition in IDs is a necessary but di�cult step when spec-
ifying the quantitative part of the model. This involves both probabilities
and utilities. Available methods rely on eliciting the numerical parameters
and their relationships from domain experts or on estimating them from data
using statistics.

In this paper we have reviewed the main methods, obstacles and chal-
lenges found within this context. First, when consulting a domain expert,
special care must be directed to follow a formal protocol to overcome biases
and poor calibration. For eliciting probabilities, we have analyzed the SRI
protocol. For utilities, the construction of the objectives hierarchy and the
use of multi-attribute utility theory based on di�erent forms of independence
is the usual procedure.

Reducing the amount of parameters is always sought, where the out-
standing techniques are: for probabilities, divorcing parents and using causal
models such as noisy-OR and noisy-AND; for utilities, networks that exploit
di�erent preferential or utility independencies like GAI-, CP-, UCP-nets and
utility diagrams. This area is still open to advances.

Second, when learning utilities from data, fewer developments are found.
The main barrier here is the requirement of special databases that �t the
knowledge to be learnt. Thus, to learn an objectives hierarchy we require a
di�erent data structure than what is required to learn a utility function. To
learn a utility function, the proposals usually start from some assumptions
hard to be checked: only a few classes of utility functions exist in the pop-
ulation of decision makers, there is a distribution over utilities with certain
parametric form, the decision maker is behavioral consistent, etc. More-
over, these kind of data are provided by the domain expert thereby having
the problems mentioned above. This is perhaps the �eld that o�ers more
challenges.

More issues not detailed here but deserving attention to establish other
promising directions and goals for further research are listed below.
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• Software tools may help in the probability and utility elicitation. Wang
and Druzdzel [91] propose graphical user interfaces that aid navigation

in very large conditional probability tables. This is based on a hierar-
chical visual representation that are shrinkable as desired. The same
ideas might be extended to utilities.

• Instead of probability distributions, some paper proposes fuzzy IDs

that use possibility distributions at chance and value nodes [55]. They
seem to be suitable when incomplete knowledge or linguistic vague-
ness are present. Garcia and Sabbadin [34] introduce possibilistic IDs

that also use possibility distributions and the possibilistic counterpart
of expected utility. Only ordinal data on preferences and on transi-
tions likelihood are available. Guezguez et al. [39] present qualitative
possibilistic IDs.

• Instead of utility theory, multiobjective tradeo� analysis may be used
as in multiobjective IDs [23]. This avoids specifying preference infor-
mation before solving the ID.

• We have not elaborated on ID evaluation methods since our focus is
on modeling. Pralet et al. [79] analyze some computational complex-
ity results for general IDs. However, we should remark that there are
considerable e�orts to tackle IDs in which computing the optimal strat-
egy is infeasible. Tradeo�s between model quality and computational
tractability are essential. Di�erent approaches include:

� Simulation methods to obtain approximate solutions [21, 73, 16];

� Evolutionary algorithms to alleviate the computational burden of
the evaluation process [36];

� Anytime algorithms to construct (sub-optimal) strategies incre-
mentally that are increasingly re�ned as computation progresses
[93, 45, 46, 47, 80]. These methods can be useful under time-
pressured situations in dynamic decision-making, when there are
constraints in modeling or computational resources and also, they
can be useful in providing intuitions about the level of detail re-
quired in an ID model (as a sensitivity analysis of the ID struc-
ture);

� Assumptions such as limited memory to simplify the complexity
of solving an ID [61].
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• As a result of incompleteness of data and partial knowledge of the prob-
lem domain being modeled, the assessments obtained are inevitably in-
accurate. This in�uences the reliability of the model output (e.g. non-
optimal recommendations may result). Sensitivity analysis identi�es
those input (critical) parameters to which perturbations of the base-
case value causes the greatest impact on the output measure (maxi-
mum expected utility, optimal decisions, etc.). Relevant references in
the di�cult task of performing sensitivity analysis in large IDs may be
found in [28, 7, 68].
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