Conditional Belief Functions

Liping Liu, Susquehanna University, Selinsgrove, PA 17870
Prakash P. Shenoy, University of Kansas, Lawrence, KS 66045

ABSTRACT

We define the notion of conditional belief functions using the se-
mantics of evidential support. We use three properties to demon-
strate that the notion of conditional belief functions generalizes
both Dempster-Shafer theory of belief functions and Bayesian
theory of probability functions.

INTRODUCTION

A belief function was thought to be the generalization of both logi-
cal and probabilistic models. It corresponds to a single logical
statement if it has only one focal proposition and reduces to a
probability distribution if all the foci are singletons. The theory of
belief functions represents logical knowledge using joint rather
conditional belief functions. For example, let H and T be two binary
zero-one variables. The logical statement 'if T =1, then H = 1" is
represented by the belief function with m({(0,0), (0,1), (1,1)}) = 1.
In general, the logical statement "if A, then B" is expressed by

m(AGUB) = 1. However, such a joint representation is difficult or at
least cumbersome to represent inexact if-then rules. The difficulty
is due to the lack of a mechanism equivalent to conditioning with
which context dependencies can be encoded. As Lewis [2] has
shown, the information conveyed in a conditional probability
statement P(A | B) = p can not be represented by assigning prob-
abilities to some Boolean function of A and B or to any set of Boo-
lean formulas.

In this paper we generalize the concept of belief functions by de-
fining conditional belief functions. We treat conditionals as a primi-
tive concept instead of a derivative from a conditioning rule [8]. We
directly assign basic probabilities to logical statements by following
the semantics of evidential support. We show that the notion of
conditional belief functions generalizes both Dempster-Shafer
theory of belief functions and Bayesian theory of probabilities.

Recently there has been extensive research on asymmetric deci-
sion problems using influence diagrams and valuation networks
[3,4,6,7). Asymmetry can be viewed as an incomplete numerical
specification of probabilities and utilities. From this perspective, an
asymmetric problem can be perfectly represented by a set of con-
ditional belief functions. As Liu and Shenoy [4] show, a valuation
network using conditional belief functions does not include any
artificial acts and states, degenerate probabilities and utilities. It
exploits the structural asymmetry of problems as well as the coa-
lescence of numerical specifications. It can save up to 80% of input
data and is a most natural and compact way of representing
asymmetric Bayesian decision problems.
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An outline of the paper is as follows. To motivate the reader, Sec-
tion 2 provides a brief review of Dempster-Shafer theory of belief
functions. Section 3 defines the concept of conditional belief func-
tions and explores its basic properties.

DEMPSTER-SHAFER THEORY

The notion of belief functions can be traced to the work of Jakob
Bernoulli on pooling pure evidence. In modern language, an item
of pure evidence proves a claim with a certain probability but has
no opinions on its negation. Probabilities in accordance with pure
evidence are not additive. For example, suppose | find a scrap of
newspaper predicting a blizzard tomorrow, which | regard as in-
fallible. Also, suppose | am 75% certain that the newspaper is to-
day's. Then, | am 75% sure of a blizzard tomorrow. However, if the
newspaper is not today's, both blizzard and no-blizzard could hap-
pen since the newspaper carries no information on tomorrow's
weather. The degree of support for {no blizzard} is 0 and for {bliz-
zard, no-blizzard} is 25%.

Bernoulli's idea of non-additive probabilities has now been well
developed by Dempster [1), Shafer [}, and many others, under the
name of the Dempster-Shafer theory of belief functions. In that
theory, a piece of evidence is encoded as a probability measure.
The degree of belief for a claim is interpreted as a degree of the
evidential support. Degrees of belief from independent items of
evidence are combined by Dempster's rule of combination. Let X
be a set of discrete variables and wx its finite sample space. Let x
denote a possible value (or configuration) of X in wx, which repre-
sents the assertion that the true value of X is x. Let x denote a
subset of wx, which is interpreted as the assertion that the true
value of X'is in x. Then, the degree of evidential support for x is
represented by m(x). The assignment of m(x) is in accordance
with a certain item of evidence and satisfies the following axioms:

o<mix) <1, m@= 0, Zmx)| xcax}= 1. (1)

A subset x is called a focal element iff m(x) > 0. Due to lack of
evidence justifying a more specific allocation, a portion of our total
belief allocated to a focal element x does not necessitate the allo-
cation of any partial belief to its subset. For the above newspaper
example, we can encode the evidence by a probability measure
with m({blizzard}) = 0.75 and m({blizzard, no-blizzard}} = 0.25.
Thus, {blizzard} and {blizzard, no-blizzard} are the two focal ele-
ments. The 25% of belief for {blizzard, no-blizzard} does not imply
any reallocation of the belief to its subsets {blizzard} and {no-
blizzard}.



If all the focal elements are singletons, we call the belief function
Bayestan. On the other hand, if the sample space is the only focal
element, we call the belief function vacuous. One advantage of the
belief function modeling is its ability to represent ignorance and
partial ignorance. In Bayesian inference, complete ignorance is
often represented by a uniform prior or a prior with large-scale
parameters such as a Gaussian distribution with large variance.
Such priors often lack theoretical or empirical bases and some-
times imply vanishingly small prior probability for regions of practi-
cal interest. The belief function formalism represents ignorance by
vacuous belief functions. It clearly distinguishes lack of belief from
disbelief. For example, a vacuous belief function with m({rainy, not-
rainy}) = 1 will be regarded as totally different from the one with
m({rainy}) = 1/2 and m({not-rainy}) = 1/2.

Another advantage of the belief function formalism is its ability to
pool independent pieces of evidence by Dempster's rule. Each
piece of evidence is encoded as a probability measure. The pool-
ing of two independent pieces of evidence can be encoded as the
product of two probability measures. From this perspective, Demp-
ster [7] developed a rule for combining belief functions that repre-
sent independent pieces of evidence. Suppose there are two belief
functions Belt and Belz respectively for sets X and Y. Their basic
probability assignments are respectively m:(x) and mz(y). Then, by
Dempster's rule, the combined belief function, denoted by Bels
®Bels, is for set Z= XY and has basic probability assignment:

m(z) = o 'Z{ mi(x)ma(y) | X =xand 2Y =y), (2)

where z'X is the projections of z to X, defined as z' = {z%X | z e
2}, where z*X is a value in x projected from z by dropping the
coordinates of z that are not in X. z*Y can be interpreted similarly.

The parameter « in (2) is a normalization constant given by
o= Z{ mi(x)ma{y) | XX Ay XY = ¢}, 3)

Note that x**"Y ~y*X¥ = ¢ indicates the conflict between the two
assertions x and y. One of them must be false and a joint asser-
tion is qualitatively impossible. Therefore, @ measures the total
belief committed to all the joint assertions that are qualitatively
possible. If & = 0, the two belief functions are incompatible be-
cause they have no joint assertions qualitatively possible.

Combination corresponds to the integration of knowledge. Some-
times we are interested in drawing partial knowledge from a full
body of knowledge. That corresponds to the coarsening of knowl-

edge, obtained by the marginalization of a belief function. Suppose

Bel is a belief function for X with basic probability assignment m(x)
and Y'is a subset of X. Then we define the marginal of Bel to Y,
denoted by Bel*Y, as a belief function for Y with basic probability
assignment m*Y satisfying

m¥(y) = S{m(x) | *Y = y} ()
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CONDITIONAL BELIEF FUNCTIONS

In this section, we define conditional belief functions by following
the above semantics of evidential support. For any two disjoint
sels of variables H and T, let h | ¢ denote the logical assertion that
"the true His in h if the true T is in t." Given two logical assertions,
h?| t"and h? | 2, we say h' | ¢ is stronger than h? | £ if h?  h?
and ¢' ~ £ = ¢. Similar to Dempster-Shafer theory of belief func-
tions, we can allocate a non-zero belief m(h | ) to logical asser-
tion h | tif there is a piece of evidence that partially supports h | ¢
but does not support any stronger assertion than h | t. We call a
logical assertion h | t a focal element iff m(h | &) > 0. Correspond-
ingly, we call h the focal head and ¢ the focal tail.

The notion of conditional belief functions has three non-trivial spe-
cial cases. First, if every focal head is ww, then it is a vacuous
belief function of H given T. Second, if every focal tail is @, then
our knowledge about H is irelevant to that about T. It is a marginal
belief function of H. Finally, if every focal head is a singleton, then

itis a Bayesian probability function.

Two conditional belief functions of H given T, m1 and mo, are called
equivalent and denoted by my ~ my, if for every focal element of
m1, h'| ¢, there exists a focal element of mz, h? | &2, such that ¢/
N # ¢, h' = h?, and mi(h? | t) = ma(h? | £2). The notion of
equivalence addresses the non-uniqueness of encoding the same
piece of evidence. Suppose H and T are two binary zero-one vari-
ables and mi({1} | {0, 1)) = 0.9, m1({0, 1} | {0}) = 0.1, and m({0} |
{1} = 0.1. This belief function can be equivalently represented as
mz({1} | {0}) = 0.9, mz({1} | {1}) = 0.9, mz({O, 1} | {0}) = 0.1, and
m2({0} | {1}) = 0.1. Note that m({1} | {0, 1}) = 0.9 is decomposed
into mz{{1} ] {0}) = 0.9 and mz({1} | {1}) = 0.9. They represent ex-
aclly the same belief. However, the former takes advantage of
numerical coalescence, which is very important in representing an
asymmetric Bayesian decision and reasoning problem [4].

It is easy to see that the equivalence relation ~ is reflexive, sym-
metric, and ftransitive. Therefore, all equivalent belief functions
form a class. When modeling or computing uncertainties using
conditional belief functions, we cannot ensure the results are
unique. However, we ensure that the different results, if any, are
equivalent and belong to the same class.

In every class of conditional belief functions, there is one member
function whose focal tails are all singletons. We call such a mem-
ber the atornic belief function. For every belief function with focal
elements h | ¢ and the mass function m, then its equivalent atomic
belief function has focal elements h | t, where f € ¢ and the mass
function mo(h [ f)=m(h |8 ift e t.

With the concepts of equivalence and atomic belief functions, now
we can formally stipulate the axioms of conditional belief functions.
A basic probability assignment function m for H given T is a non-
negative, real-valued function m on logical assertions h | ¢ such
that its atomic equivalent mo satisfies the following: For any f € wr,



O<molh|f <1, mo(g|1) =0,
Z{mo(h | ) |h c o} = 1

Suppose m is a mass function of H given T. We define the corre-
sponding belief and plausibility functions as follows: For any logical
assertion h | ¢, where ¢is nonempty,

Bel(h | )= Z{m(h'| ) |h'ch t' 26 O]
Pth1§=2{m(h’ | ) | ' h# . '8 ()

Property 1. For any h — wy and nonempty t c ar,
0<Belth|f)<sPi(h| <1 (6)
Pith| t)<1-Bel(he| 1) N

The equality in (7) holds if the belief function is atomic.

Property 2. If a belief function is Bayesian, i.e., all focal heads are
singletons. Then for any t et and h < o,

Bel(h | = Pi(h | ).

That is, both belief and plausibility functions reduce to a probability
function.

Property 3. Suppose all focal tails are wt. Then for any h < on
and tc o,

Bei(h | £) = Bel(h | 1), Pi(h | §) = Pi(h | 07) (8)
Pith| 8 =1-Bel(h¢| ¢ 9)

That is, conditional belief functions reduce to marginal ones if T is
irrelevant for H.

The above properties demonstrate that the concept of conditional
belief functions is a natural extension of both Bayesian theory of
probabilities and Dempster-Shafer theory of belief functions.

Example: A game uses two fair but illegible dice a and b and a
biased coin. The die a has face numbers 1, 3, and 6 blurred and
illegible. The die b has numbers 2, 3, and 5 blurred and illegible.
The coin is biased toward heads and its probability of landing
heads is 2/3. The coin is tossed and the gambler must decide
whether he wants to see the outcome or not. If he wants the out-
come to be disclosed, he will be awarded $100 if the coin lands a
head and otherwise he will be punished by $10. Before he decides
to reveal, he has a choice of buying a hint with $5. The hint is an-
other gamble as follows. The gambler is told that he will be asked
to throw die a if the outcome is a head or die b if it is a tail. How-
ever, whether the die is a or b is not identifiable. The only informa-
tion the gambler can acquire is the outcome of throwing the die.

In this problem, let T denote the outcome of tossing the coin and H
the outcome of throwing a die. Then the knowledge about the hint
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game can be expressed as a conditional belief function with the
basic probability assignment as follows:

m({1,3,6} | fhead}) = 112,

m({2,3,5} | {tail}) = 112, m({4} | w1) = 176,

m({5} | {head}) = m({2} | {head}) = 1/6,
m({1} | {tail}) = m({B} | {tail}) = 1/6.

Then we can compute the belief and plausibility for all logical as-
sertions. For example, we have

Bel({1,2,4} | {head}) = m({2} | thead}) + m({4} | wr) = 113,
PI{1,24} | head}) = m({2} | {head}) + m({4} | o1)
*+m({1,3,6}] {head}) = 56,
Bel({3,5,6} | {head}) = m({5} | {head}) = 116,
1-Pi({1,2,4} | {head}) = 1/6 = Bel({3,5,6} | {head}),

Bel({3,5,6} | o1) =0 < 1 - PI({1,2,4} | w1) = 5/6.
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