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We describe a framework and an algorithm for approximately solving a class of hybrid influence diagrams
(IDs) containing discrete and continuous chance variables, discrete and continuous decision variables, and

deterministic conditional distributions for chance variables. A conditional distribution for a chance variable is
said to be deterministic if its variances, for each state of its parents, are all zeroes. The solution algorithm is an
extension of Shenoy’s fusion algorithm for discrete influence diagrams. To mitigate the integration and optimiza-
tion problems associated with solving hybrid IDs, we propose using mixture of polynomials approximations
of conditional probability density and utility functions and piecewise linear approximations of nonlinear deter-
ministic conditional distributions for continuous chance variables. The class of hybrid IDs that can be solved by
our framework are those that do not involve divisions. The framework and algorithm are illustrated by solving
two small examples of hybrid IDs.
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1. Introduction
An influence diagram (ID) is a formal compact repre-
sentation of a Bayesian decision making under uncer-
tainty problem. It consists of four parts: a sequence
of decisions, a set of chance variables with a joint
distribution represented by a Bayesian network (BN),
the decision maker’s preferences for the uncertain
outcomes represented by a joint utility function, and
information constraints that indicate what uncertain-
ties are known and unknown when a decision has
to be made. IDs were initially defined by Howard
and Matheson (1984, 2005). Howard and Matheson’s
(1984, 2005) definition of an ID allowed a single
(unfactored) utility node. Tatman and Shachter (1990)
subsequently generalized IDs to include multiple util-
ity nodes that combine additively or multiplicatively
or some combination of the two. In this paper, we
assume that the utility factors combine additively.

Hybrid IDs are IDs containing a mix of discrete and
continuous chance variables, and discrete and contin-
uous decision variables. A conditional distribution (or
conditional, in short) for a chance variable in an ID is
said to be deterministic if the variances, for each state

of the variable’s parents, are all zeroes. Determinis-
tic conditionals for discrete chance variables pose no
computational problems. Deterministic conditionals
for continuous chance variables pose a computational
challenge as the joint density function for all contin-
uous variables does not exist, and this nonexistence
can pose problems when solving such IDs. Therefore,
from here onward, when we speak of variables with
deterministic conditionals, we are referring to contin-
uous variables.

In practice, one encounters decision problems in
which some chance and decision variables (such as
demand, cost, stock price, profit, etc.) are continuous
in nature. If we maintain the continuous nature of
these variables (i.e., we do not discretize such vari-
ables), the result is a hybrid ID. However, solving
a hybrid ID involves two main computational chal-
lenges. First, marginalizing a continuous chance vari-
able involves integration of a product of density and
utility functions. In some cases, such as the Gaussian
density function, there may not exist a closed-form
representation of the integral. We will refer to this
problem as the integration problem.
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Second, marginalizing a decision variable involves
maximizing a utility function. If a decision variable is
continuous and has relevant continuous information
predecessors, then we may be faced with the prob-
lem of finding a closed-form solution to the maxi-
mization problem. Not only do we have to find an
optimal value of the decision variable as a function
of the states of its relevant information predecessors,
we also have to find a closed-form expression of the
maximum utility as a function of the states of its rel-
evant information predecessors. We will refer to this
problem as the optimization problem.

In this paper, we describe a framework and an
algorithm for solving a class of hybrid IDs approxi-
mately. The framework is an extension of the Shenoy
and Shafer (1990) architecture for making inferences
in hybrid BNs described by Shenoy and West (2011a)
and includes decision variables and utility functions.
The algorithm consists of using mixtures of polyno-
mials (MOPs) for approximating probability density
functions (PDFs) of continuous variables, approximat-
ing nonlinear deterministic conditionals by piecewise
linear ones, using Dirac delta functions to represent
deterministic conditionals for continuous chance vari-
ables, and approximating utility functions by MOPs.
The class of hybrid IDs that can be solved by our
framework are those IDs that can be solved using
local computation without the use of the division
operation. We illustrate our method by solving two
small examples.

An outline of the remainder of this paper is as
follows. In §2, we review the literature on solving
hybrid IDs, we list the contributions of our paper,
and we sketch the limitations of our method. In §3,
we describe a framework and an algorithm to solve
hybrid IDs with deterministic variables. In §4, we
define MOP functions, a process for approximat-
ing conditional PDFs and utility functions by MOP
functions, and a process for finding piecewise linear
approximations of nonlinear deterministic condition-
als. In §5, we solve two decision problems to illustrate
our framework and algorithm. Finally, in §6, we con-
clude with a summary and a discussion on the limita-
tions of using MOP functions for solving hybrid IDs
and some related topics for future work.

2. Previous Work on Solving
Hybrid IDs

In this section, we review previous work on solving
hybrid IDs and discuss the main contributions and
limitations of our method.

2.1. Discretization
A traditional method for solving a hybrid ID is to
approximate the hybrid ID with a discrete ID by dis-
cretizing the continuous chance and decision vari-
ables (see, e.g., Miller and Rice 1983, Keefer and
Bodily 1983, Smith 1993). If we discretize a contin-
uous variable using too few bins, we may have an
unacceptable approximation of the problem. On the
other hand, if we use many bins, we increase the
computational effort of solving the resulting discrete
ID. In the BN literature, Kozlov and Koller (1997)
described a dynamic nonuniform discretization tech-
nique for chance variables depending on the region
where the posterior density lies. This technique needs
to be adapted for solving hybrid IDs.

2.2. Monte Carlo Methods
Another method for solving hybrid IDs is to use
Monte Carlo (MC) methods. One of the earliest
to suggest MC methods for solving decision trees
was Hertz (1964), which sampled the entire joint
distribution of all chance variables. Charnes and
Shenoy (2004) proposed an MC method that sam-
ples from a small set of chance variables at a
time for each decision variable. Ortiz and Kaelbling
(2000) proposed several MC methods and provided
bounds on the number of samples required given
some error bounds. Bielza et al. (1999) explored
the use of Markov chain MC methods to solve a
single-stage decision problem with continuous deci-
sion and chance nodes to solve the maximization
problem. Cano et al. (2006) described a forward–
backward Monte Carlo method for approximate solu-
tions of IDs. While Monte Carlo methods can handle
continuous chance variables, there is one limitation.
If we have a decision variable with continuous chance
variables as relevant predecessors, then finding an
optimal decision function for the decision variable
requires discretization of the continuous chance vari-
ables that are in the relevant domain.
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2.3. Gaussian IDs
Among exact methods, Shachter and Kenley (1989)
provided a theory to solve IDs where all chance
and decision variables are continuous. The continu-
ous chance variables are required to have the con-
ditional linear Gaussian (CLG) distributions, and the
utility function is required to be quadratic. Such IDs
are called Gaussian IDs. These requirements ensure
that the joint distribution of all chance variables is
multivariate Gaussian, whose marginals can be eas-
ily found without the need for integration. Also, the
quadratic nature of the utility function ensures that
there is a unique maximum that can be computed
in closed form without the need for searching for an
optimal solution.

2.4. Mixture of Gaussian IDs
Poland (1994) and Poland and Shachter (1993) extend
Gaussian IDs to include discrete chance variables
that do not have continuous parents. If a continuous
chance variable does not have a CLG distribution, then
it can be approximated by a mixture of Gaussians rep-
resented by a discrete variable with mixture weights
and a continuous variable with the discrete variable as
its parent and with CLG distributions. Like Gaussian
IDs, mixtures of Gaussian IDs are required to have
quadratic utility functions.

2.5. Mixture of Truncated Exponentials
To find posterior marginals in hybrid BNs, Moral
et al. (2001) proposed approximating PDFs by mix-
tures of truncated exponentials (MTEs) as a solu-
tion for the integration problem. The family of MTE
functions is easy to integrate, is closed under com-
bination and marginalization, and can be propagated
using the Shenoy and Shafer (1990) architecture. Cobb
et al. (2006) described MTE approximations for sev-
eral commonly used univariate PDFs such as normal,
log-normal, Gamma, etc. Cobb and Shenoy (2005a)
extended the MTE BN framework to include one-
dimensional deterministic conditionals described by
linear functions. For one-dimensional nonlinear func-
tions, Cobb and Shenoy (2005b) proposed approxi-
mating them by piecewise linear functions.

For solving IDs, Cobb and Shenoy (2008) described
MTE IDs, where the PDFs of continuous chance vari-
ables and the utility functions are described using

MTE functions, and decision nodes are all discrete.
Thus, any PDF can be used as long as they can be
approximated by MTEs, and discrete variables can
have continuous parents. Cobb (2007) described con-
tinuous decision MTE IDs, where in addition to using
MTE potentials to represent PDFs and utility func-
tions, continuous decisions are allowed.

The MTE methods surveyed here for BNs and IDs
cannot cope with multidimensional linear determin-
istic conditionals. For example, if X and Y are inde-
pendent exponential random variables with Poisson
rate parameter ã = 1 (whose PDFs are MTE func-
tions), then Z=X+Y has a Gamma distribution (with
parameters r = 2 and ã= 1), whose PDF (f

Z

4z5= z e

Éz

if z > 0) is not an MTE function (because of the pres-
ence of the z e

Éz term in the PDF).

2.6. Mixture of Polynomials.
Similar to MTEs, Shenoy and West (2011b) and
Shenoy (2012) propose approximating PDFs by piece-
wise polynomial functions called mixtures of polyno-
mials. Like MTEs, MOPs are closed under multiplica-
tion, addition, and integration. Thus, they can be used
to find marginals in hybrid BNs using the Shenoy
and Shafer (1990) architecture. MOP functions have
some advantages over MTE functions. MOP approx-
imations can be found (more easily than MTE) using
Lagrange interpolating polynomials with Chebyshev
points (Shenoy 2012), even for multidimensional ones.
Also, they are closed for a larger class of determin-
istic functions than MTE functions, which are closed
only for one-dimensional linear functions (e.g., W =
aX+ b). MOP functions are closed under transforma-
tions required for multidimensional linear (e.g., W =
X + Y ) and for multidimensional quotient (e.g., W =
X/Y , W = 4X/Y 5/Z5, etc.) deterministic functions.

2.7. Contributions
The major contributions of this paper are as follows.
First, we further extend the extended Shenoy–Shafer
architecture, described in Shenoy and West (2011a)
for inference in hybrid BNs to enable the solution of
hybrid IDs with deterministic conditionals. We extend
the architecture to include discrete and continuous
decision variables and utility functions. The algorithm
for solving hybrid IDs is essentially the same as the
fusion algorithm proposed by Shenoy (1992) for dis-
crete IDs.
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Second, to address the integration and optimization
problems, we propose using MOP approximations of
PDFs and utility functions. The family of MOP func-
tions is closed under multiplication, addition, inte-
gration, and transformations needed for multidimen-
sional linear deterministic functions. It is not closed
under divisions or transformations needed for nonlin-
ear deterministic functions (such as Z=X ·Y , Y =X

2,
etc.) For hybrid IDs that contain nonlinear determin-
istic conditionals, we propose approximating these by
piecewise linear functions as suggested by Cobb and
Shenoy (2005b).

Regarding the optimization problem, because MOP
functions are easily differentiable, finding the maxi-
mum of a utility function that is in MOP form is also
easier than for non-MOP utility functions.

Previous methods for solving IDs containing con-
tinuous chance variables assume either CLG condi-
tionals, in which case one can allow deterministic con-
ditionals described by linear functions (Shachter and
Kenley 1989, Poland and Shachter 1993), or non-CLG
conditionals that are approximated by MTEs (Cobb
and Shenoy 2008), which are closed only for one-
dimensional linear deterministic conditionals (Shenoy
et al. 2011). The framework described here extends
the class of IDs that can be solved—the chance vari-
ables can have any distributions as long as they can
be approximated by MOPs, the utility functions can
be of any form as long as they can be approxi-
mated by MOPs, there are no topological restrictions
such as discrete variables with no continuous parents,
and we can have any deterministic conditionals as
long as they can be approximated by piecewise linear
functions.

2.8. Limitations
Some limitations of our method are as follows. First,
the family of MOP functions is not closed under the
division operation. Solving an ID with an additive
factorization of the utility function using local compu-
tation may require divisions. Such problems will not
be amenable to our method. The Pigs problem, dis-
cussed by Lauritzen and Nilsson (2001), is an example
of a problem of this type (requires divisions for solu-
tion using local computation).

Second, for IDs containing deterministic condition-
als, MOPs are closed only for multidimensional linear

and quotient functions. For multidimensional deter-
ministic conditionals that are described by functions
that are neither linear nor quotient, the family of
MOPs is not closed under transformations required
for such functions. However, if such deterministic
functions can be approximated by piecewise linear
ones, then one can still solve such problems using our
method.

Third, because our method uses MOPs to approx-
imate PDFs and utility functions, it inherits all the
limitations of MOP-based methods. For example,
finding a MOP approximation of a high-dimensional
conditional PDF can be difficult. Thus, if we have
a continuous chance variable with many continuous
chance parents, this will pose a problem for find-
ing a MOP approximation. Shenoy (2012) describes a
MOP approximation of a three-dimensional CLG PDF.
In this paper, we describe a procedure for finding a
MOP approximation of a PDF using Lagrange inter-
polating polynomials with Chebyshev points. Using
this procedure, we can find MOP approximations
of the two-dimensional conditional log-normal PDFs
needed to solve the American put option problem
described by §5.2. In any case, we are not at a stage
where one can fully automate the procedure of find-
ing MOP approximations of conditional PDFs and
utility functions.

3. A Framework for Solving
Hybrid IDs

In this section, we describe a framework and an algo-
rithm for solving hybrid IDs with deterministic con-
ditionals. The framework described here is a further
extension of the extended Shenoy–Shafer architecture
described by Shenoy and West (2011a) for inference
in hybrid BNs with deterministic conditionals. Here,
we include decision variables and utility potentials,
and we keep track of the nature of potentials (dis-
crete, continuous, or utility) by keeping track of their
units during the combination and the marginalization
operations. The algorithm described is adapted from
Shenoy (1992) for the case of discrete IDs.

3.1. Variables and States
We are concerned with a finite set V = D [ C of
variables. Variables in D are called decision variables,
and variables in C are called chance variables. Each
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variable X 2 V is associated with a set Ï

X

of pos-
sible states. If Ï

X

is finite or countable, we say X is
discrete, otherwise X is continuous. We will assume
that the state space of continuous variables is the set
of real numbers (or some measurable subset of it),
and that the state space of discrete variables is a set
of symbols (not necessarily real numbers). If r ✓ V 1

r 6= ô, then Ï

r

= ⇥8Ï

X

ó X 2 r9. If r = ô, we will
adopt the convention that Ïô = 8⇧9.

We will distinguish between discrete and contin-
uous chance variables. Let C

d

and C
c

denote the
set of all discrete and continuous chance variables,
respectively. Then, C =C

d

[C
c

. We do not distinguish
between discrete and continuous decision variables.

In an ID, each chance variable has a conditional
distribution function for each state of its parents.
A conditional distribution function associated with a
chance variable is said to be deterministic if its vari-
ances (for each state of its parents) are all zeros. For
example, suppose P (profit), R (revenue), and C (cost)
are three continuous chance variables, and suppose
R and C are parents of P . Furthermore, suppose the
conditional of P is as follows: P ó 4r1 c5 = r É c with
probability 1. In this example, the conditional for P is
deterministic, and we will denote it by the equation
P =RÉC.

In an ID, we will depict decision variables
by rectangular nodes, discrete chance variables by
single-bordered elliptical nodes, continuous chance
variables with nondeterministic conditionals by
double-bordered elliptical nodes, continuous chance

Figure 1 An Influence Diagram Representation of the Entrepreneur’s Problem

Z1 ~ N(0, 1)

Z1 Z2

Z2 ~ N(0, 1)

Cn = 700+4Qa+400(1–e–Qa/50)

Qn Qa Cn Ca

P

Qn = 80(ln 50 – ln P)

Ca = Cn+Z2

Qa = Qn+Z1

ΩP = {p | 1 ≤ p ≤ 47} π = PQa–Ca

π

variables with deterministic conditionals by triple-
bordered elliptical chance nodes, and additive factors
of the joint utility function by diamond-shaped nodes.
We do not distinguish between discrete and continu-
ous decision variables.

An example of a hybrid ID is shown in Figure 1.
This ID is a representation of the entrepreneur’s prob-
lem, which will be described later in this section.
In this ID, Z1 and Z2 are continuous chance nodes
with nondeterministic conditionals; Q

n

, Q
a

, C
n

, and C

a

are continuous chance nodes with deterministic con-
ditionals; P is a continuous decision node; and è is a
utility node.

3.2. Projection of States
If x 2 Ï

r

, y 2 Ï

s

, and r \ s = ô, then 4x1y5 2 Ï

r[s .
Thus, 4x1⇧5= x. Suppose x 2Ï

r

, and s ✓ r . Then, the
projection of x to s, denoted by x#s , is the state of s

obtained from x by dropping states of r\s. Thus, e.g.,
4w1x1y1z5

#8W 1X9 = 4w1x5, where w 2Ï

W

, and x 2Ï

X

.
If s = r , then x#s = x. If s =ô, then x#s = ⇧.

3.3. Discrete Potentials
In an ID, the conditional probability functions asso-
ciated with chance variables are represented by func-
tions called potentials. If A is discrete, it is associated
with a conditional probability mass function. The con-
ditional probability mass functions are represented by
functions called discrete potentials. Formally, suppose
r ✓V . A discrete potential for r is a function Å2 Ï

r

!
60117 such that the values (in the interval 60117) are
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in units of probability, which are dimensionless num-
bers without any physical units (such as feet, pounds,
seconds, etc.).

Although the domain of the potential Å is Ï

r

, we
will refer to r as the domain of Å. Thus, the domain
of a potential representing the conditional probabil-
ity function associated with some chance variable X

in an ID is always the set 8X9 [ pa4X5, where pa4X5

denotes the set of parents of X in the ID graph.
The values of discrete potentials are always in units

of probability. For example, suppose B is a discrete
chance variable with states b (buyer) and nb (no
buyer), suppose P (price in dollars per bushel) is
a continuous variable, and suppose Ç is a discrete
potential for 8B1P 9, representing the conditional for
B given P , such that Ç4b1p5 = 1/41 + e

É605+p

5, and
Ç4nb1p5 = e

É605+p

/41+ e

É605+p

5. The values of Ç are in
units of probability.

3.4. Continuous Potentials
Continuous chance variables with nondeterministic
conditionals are associated with conditional PDFs.
Conditional PDFs are represented by functions called
continuous potentials. Formally, suppose r ✓ V .
A continuous potential Ü for r is a function Ü2 Ï

r

!✓+,
where ✓+ is the set of nonnegative real numbers with
units of (probability) density.

The values of continuous potentials are always in
units of density. For example, suppose Y is a con-
tinuous variable whose states are in units of, say,
unitY , with continuous chance variable X as a parent.
Suppose that the conditional associated with Y ó x is
N 4x115. Then, the values of the continuous potential
ñ for 8X1Y 9 such that ñ4x1y5= 41/

p
2è5e

É4yÉx5

2
/2 are

in units of probability per unit of Y , which is denoted
simply by 4unitY 5

É1.
Continuous variables with deterministic condition-

als have conditionals described by equations. We will
represent such conditionals by continuous poten-
tials that use Dirac delta functions Ñ defined by
Dirac (1927).

3.5. Dirac Delta Functions
A function Ñ2 ✓!✓+ is called a Dirac delta function if
Ñ4x5= 0 if x 6= 0 and

R à
Éà Ñ4x5dx = 1. The values of Ñ

are in units of density.
The Dirac delta function Ñ is not a proper function

because the value of the function at 0 doesn’t exist

(i.e., is not finite). It can be regarded as a limit of a
certain sequence of functions (such as, e.g., the Gaus-
sian density function with mean 0 and variance ë

2 in
the limit as ë ! 0). However, it can be used as if it
were a proper function for practically all our purposes
without getting incorrect results.

Although the value Ñ405 (in units of density) is
undefined, i.e., à, we argue that we can interpret the
value Ñ405 as probability 1 at the location x= 0. Con-
sider the Gaussian PDF with mean 0 and variance
ë

2. Its moment-generating function (MGF) is M4t5=
e

ë

2
t

2
/2. In the limit as ë ! 0, M4t5= 1. Now, M4t5= 1

is the MGF of the degenerate probability distribution
X = 0 with probability 1. Thus, we can interpret the
value Ñ405 as probability 1 at the location x= 0.

Some basic properties of the Dirac delta function
are given in the appendix. An example of a determin-
istic conditional is as follows. Suppose R (revenue in
m$) is a continuous chance variable with continuous
chance parents P (price in dollars per bushel) and C

(crop size in mbushels), and discrete chance parent B
with states b (buyer) and nb (no buyer). Suppose R

is associated with a deterministic conditional as fol-
lows: R= P ·C if B= b, and R= 0 if B= nb. Then this
conditional is represented by a continuous potential
ê for 8P1C1B1R9 such that ê4p1 c1 b1 r5 = Ñ4r É p · c5,
and ê4p1 c1nb1 r5 = Ñ4r5. The values of ê are in units
of 4m$5É1.

In general, if Y is a continuous variable with
continuous parents 8X11 0 0 0 1Xn

9 and discrete par-
ents 8A11 0 0 0 1Am

9 and has a deterministic condi-
tional Y = g

i

4X11 0 0 0 1Xn

5 if 4A11 0 0 0 1Am

5 = a
i

, for
i = 11 0 0 0 1 óÏ

8A110001Am

9

ó, then such a deterministic con-
ditional is represented by the continuous potential
ñ4x1a

i

1y5 = Ñ4y É g

i

4x55 for all x 2 Ï

8X110001Xn

9

, a
i

2
Ï

8A110001Am

9

, i= 11 0 0 0 1 óÏ
8A110001Am

9

ó, and y 2Ï

Y

. The units
of values of ñ are 4unitY 5

É1.

3.6. Constraint Potentials
In some problems, there may be constraints on the
possible states of decision variables based on states
of other preceding variables. Such constraints are rep-
resented by potentials called constraint potentials.
Suppose s is a set of variables such that it includes
a decision variable, say, X. A constraint potential ï

for s associated with X 2 s is a function ï2 Ï

s

!
80119 such that ï4x1y5 = 1 if x 2 Ï

X

is a possible
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alternative given y 2Ï

s\8X9

, and ï4x1y5= 0 if not. We
assume that the constraint potential is formally spec-
ified for all states of s. In practice, it is sufficient to
just specify the states of s that are possible (with the
rest assumed to be not possible). The values (0 or 1)
of constraint potentials are in dimensionless units.
Constraint potentials are used during the process of
marginalizing a decision variable.

The entrepreneur’s problem discussed in §5 has a
constraint on the price variable 1  p  47. This con-
straint is handled implicitly because we expect from
the nature of the problem to find an optimal price
that lies in this interval (at the two extreme prices,
we expect the profits to be small or negative). In the
American put option problem (also discussed in §5),
we have constraints that are handled explicitly. These
are described in §5.

Constraint potentials share the same units as dis-
crete potentials, and so it is important to not confuse
the two. In an ID representation, discrete poten-
tials are associated with discrete chance variables,
and constraint potentials are associated with decision
variables. We will sometimes refer to the set of dis-
crete and continuous potentials as probability poten-
tials, which does not include constraint potentials.

3.7. Utility Potentials
An ID representation includes utility functions that
represent the preferences of the decision maker for
the various outcomes. If an ID has more than one
utility node, we assume an additive factorization of
the joint utility function. Each additive factor of the
utility function is represented by a utility potential.
Formally, a utility potential ì for t ✓ V is a function
ì2 Ï

t

! ✓ such that the values (in ✓) are in units of
utiles. An example of an utility potential is found in
an example described below.

3.8. Summary
In summary, we can have four different kinds of
potentials in IDs. The values of discrete potentials
are in units of probabilities, which are dimension-
less numbers (in the interval 60117) with no physical
units. The values of continuous potentials are in units
of density, such as 4unitX5

É1, 4unitX5

É1 · 4unitY 5

É1,
etc. The values of utility potentials are in units of
utiles. The values of constraint potentials are either

0 or 1 in dimensionless units. In the process of solv-
ing an ID, we may create potentials that have hybrid
units such as utiles · 4unitX5

É1, etc. However, after we
marginalize all chance and decision variables, we will
ultimately end with a utility potential for the empty
set. Details are provided in the section on solving
hybrid IDs.

3.9. An Example
We will illustrate the concepts described so far using
the entrepreneur’s problem adapted from Howard
(1971). An entrepreneur has to decide on a price for
her new product. When the entrepreneur selects a
price P (in dollars per widget), the quantity Q

n

(in
mwidgets) that she will sell is determined from the
demand curve Q

n

4P 5. This quantity Q

n

will have a
total cost of manufacturing C

n

4Q

n

5 (in m$) given by
the total cost curve. The entrepreneur’s profit è

n

(in
m$) will then be the difference between her revenue
P ·Q

n

and her cost C
n

, i.e., è
n

= P ·Q
n

ÉC

n

. We assume
that the entrepreneur is risk neutral, i.e., her utility
is linear in millions of dollars, u4xm$5= x utiles. The
entrepreneur needs to decide on a price p that will
maximize her utility.

This problem would be simple if the demand curve
and total cost curve were known with certainty, but
this is seldom the case. We shall assume that the quan-
tity Q

n

determined from the demand curve is only a
nominal value and that the actual quantity sold will
be Q

a

= Q

n

+ Z1, where Z1 (in mwidgets) is a stan-
dard normal random variable. Furthermore, produc-
ing this quantity Q

a

will cost C
a

=C

n

4Q

a

5+Z2, where
Z2 (in m$) is another independent standard normal
random variable. Note that the profit è (in m$) is now
è = P ·Q

a

ÉC

a

.
For the demand curve, the functional form is

Q

n

4p5= 4lnÅÉ ln p5/Ç, where p Å, and the constants
are given by Å = 50 and Ç = 1/80. This is a decreas-
ing function—at a price of $1/widget, she would sell
80 · ln 50⇡ 313 mwidgets, and at a price of $50/widget,
she would sell none. For the total cost function we
assume the form C

n

4q

a

5= k0+k1qa+k241É e

Ék3qa
5 with

constants k0 = 700, k1 = 4, k2 = 400, and k3 = 1/50. The
total cost function is an increasing function, but at a
decreasing rate. We restrict the range of P to make
sure that Q

a

is nonnegative. An ID representation of
the problem is depicted in Figure 1.
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The potentials in this example are as follows.
We start with the name of the potential and then give
its domain, details of the potential, and its units:

1. ï
a

for 8C
n

1Z21Ca

9 such that ï
a

4c

n

1z21 ca5= Ñ4c

a

É
4c

n

+ z255, 4m$5É1;
2. ù2 for Z2 such that ù24z25 = 41/

p
2è5e

Éz

2
2/2,

4m$5É1;
3. ï

n

for 8Q
a

1C

n

9 such that ï
n

4q

a

1 c

n

5= Ñ4c

n

É 4700+
4q

a

+ 40041É e

Éq

a

/50
555, 4m$5É1;

4. à
a

for 8Q
n

1Z11Qa

9 such that à
a

4q

n

1z11 qa5= Ñ4q

a

É
4q

n

+ z155, 4mwidgets5É1;
5. ù1 for Z1 such that ù14z15 = 41/

p
2è5e

Éz

2
1/2,

4mwidgets5É1;
6. à

n

for 8P1Q

n

9 such that à

n

4p1 q

n

5 = Ñ4q

n

É
804ln 50É ln p55, 4mwidgets5É1;

7. è for 8P1Q
a

1C

a

9 such that è4p1 q

a

1 c

a

5= p ·q
a

Éc

a

,
utiles.

It is evident from the units that the first six poten-
tials are continuous potentials and the seventh is a
utility potential. There is no potential associated with
decision variable P . A valuation network (VN) repre-
sentation (Shenoy 1992) (also called a factor graph by
Kschischang et al. 2001) of the entrepreneur’s problem
in shown in Figure 2. A VN is a bipartite graph with
variables and potentials as nodes. Variable nodes are
depicted just as in IDs. Potential nodes are depicted
by diamond-shaped nodes. Probability and utility
potentials are depicted by single-bordered diamond-
shaped nodes. Constraint potentials are depicted by
double-bordered diamond-shaped nodes. Each poten-
tial has an edge between it and the variables in its
domain. During the solution phase, we switch from
the ID to the VN representation because there are no
guarantees that the ID representation will be main-
tained at each step of the solution algorithm (Shenoy
1992). In §5, we describe a solution to this problem.

Figure 2 A Valuation Network Representation of the Entrepreneur’s Problem

P

π

$/widget mwidgets mwidgets mwidgets m$ m$ m$

Qn QaZ1

!n

!a

"1

χn

"2
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(mwidgets)–1 (mwidgets)–1

(mwidgets)–1utiles (m$)–1

(m$)–1

(m$)–1

Cn Z2 Ca

3.10. Combination of Potentials
The definition of combination of potentials depends
on the units of the potentials being combined.
Although there are many possible combinations of
units, we have only two distinct definitions. Utility
functions are additive factors of the joint utility func-
tion. Thus, combination of two utility potentials (both
in units of utiles) involves pointwise addition. In all
other cases, combination of potentials involves point-
wise multiplication. Thus, in problems where we have
a single utility node, combination is always pointwise
multiplication.

Suppose ì1 and ì2 are utility potentials for t1 and
t2, respectively. Then, the combination of ì1 and ì2,
denoted by ì1 Ü ì2, is a utility potential for t1 [ t2

defined as follows:

4ì1 Ü ì254x5= ì14x
#t1
5+ ì24x

#t2
5 for all x 2Ï

t1[t2 0 (1)

The units of 4ì1 Ü ì25 are utiles.
Suppose Å1 and Å2 are potentials for t1 and t2,

respectively, such that Å1 and Å2 are not both util-
ity. Then, the combination of Å1 and Å2, denoted by
Å1 ÜÅ2, is a potential for t1 [ t2 defined as follows:

4Å1 ÜÅ254x5= Å14x
#t1
5 ·Å24x

#t2
5 for all x 2Ï

t1[t2 0 (2)

The units of 4Å1 ÜÅ25 are the product of the units of
Å1 and Å2. Thus, e.g., if Å1 is discrete and Å2 is utility
(or vice versa), then Å1ÜÅ2 is utility; and if Å1 is con-
tinuous and Å2 is utility (or vice versa), then Å1 ÜÅ2

will have hybrid units such as utiles · 4unitX5

É1, etc.
Observe that combination of potentials is nonasso-

ciative. Thus, if ë is a discrete or continuous potential,
and ì1 and ì2 are utility potentials, then ëÜ4ì1Üì25 6=
4ë Ü ì15 Ü ì2. This nonassociativity of combination
will necessitate divisions if we wish to use local
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computation (Shenoy 1992). This will be discussed
further in the section on solving hybrid IDs.

3.11. Marginalization of Potentials
In the process of solving an ID, we marginalize
chance and decision variables in some sequence that
is dictated by the information constraints. Before we
marginalize a variable, we may have to do some com-
bination and division operations prior to marginaliza-
tion. In this subsection, we define just the marginal-
ization operation without describing the details of
how the potential being marginalized is obtained. The
details of the solution algorithm are described after
we have completed all requisite definitions.

The definition of marginalization of potentials
depends on the nature of the variable being marginal-
ized. We marginalize discrete chance variables by
addition over its state space, continuous chance vari-
ables by integration over its state space, and decision
variables (discrete or continuous) by maximization
over its state space, which may be further constrained
by constraint potentials.

Suppose Å is a potential for a, and suppose X 2 a is
a discrete variable. Then, the marginal of Å by delet-
ing X, denoted by Å

ÉX , is a potential for a\8X9 given
as follows:

Å

ÉX

4y5=
X

x2Ï
X

Å4x1y5 for all y 2Ï

a\8X9

0 (3)

In this case, the units of ÅÉX are exactly the same as
the units of Å.

If X 2 a is a continuous variable, then Å

ÉX is defined
as follows:

Å

ÉX

4y5=
Z à

Éà
Å4x1y5dx for all y 2Ï

a\8X9

0 (4)

In this case, the units of ÅÉX are the units of Å multi-
plied by the units of X.

And if X 2 a is a decision variable, then Å

ÉX is
defined as follows:

Å

ÉX

4y5=max
x2Ï

X

Å4x1y5 for all y 2Ï

a\8X9

0 (5)

In this case, the units of Å

ÉX are exactly the same
as the units of Å. If we have a constraint potential
ï for s associated with X 2 s, then we assume that
ï is already included in Å (so that s ✓ a), and the
maximization in Equation (5) is over x 2Ï

X

such that
ï4x1y#s\8X9

5= 1.

3.12. Division of Potentials
The process of solving an ID may involve division of
discrete or continuous potentials by discrete or con-
tinuous potentials. Also, the potential in the divisor is
always a marginal of the potential being divided.

Suppose Å is a discrete or continuous potential
for a, and suppose X 2 a is a discrete or continu-
ous chance variable. Then the division of Å by Å

ÉX ,
denoted by Å ↵ Å

ÉX , is a potential for a defined as
follows:

4Å↵Å

ÉX

54x1y5 = Å4x1y5/ÅÉX

4y5

for all x 2Ï

X

1 and y 2Ï

a\8X9

0 (6)

In Equation (6), if the denominator is 0, then the
numerator is also 0, and in this case we define 0/0
as 0. The units of the potential Å↵Å

ÉX are the units of
Å divided by the units of ÅÉX . For the division oper-
ations that are done in the process of solving an ID
(described in the next subsection) it can be shown that
Å↵ Å

ÉX represents the conditional for X given vari-
ables in a\8X9. Thus, if X is discrete, then Å↵Å

ÉX is
discrete, and if X is continuous, Å↵Å

ÉX is continuous
in units of 4unitX5

É1 (Cinicioglu and Shenoy 2009).

3.13. An Algorithm for Solving Hybrid Influence
Diagrams

We have all the definitions needed to solve hybrid IDs
with deterministic conditionals. The solution algo-
rithm is basically the same as described by Shenoy
(1992) and Lauritzen and Nilsson (2001) for discrete
IDs. The details of the solution algorithm are as
follows.

First, all variables need to be marginalized in a
sequence that respects the information constraints in
the sense that if X precedes Y in the information
sequence, then Y must be marginalized before X. In a
well-defined ID, the information constraints form a
partial order such that if C is a chance variable, and D

is a decision variable, exactly one of the following
information constraints must hold: either C precedes
D, or D precedes C. In the former case, the true value
of C is known by the decision maker prior to choos-
ing a state of D, and in the latter case, the true value
of C is not known at the time the decision maker has
to choose a state of D.

First, we describe the general case where we have
an additive factorization of the joint utility function. In
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this case, divisions may be required. Next, we describe
some special cases where divisions can be avoided.

We start with a set of potentials included in an ID
representation. These potentials get modified in the
process of marginalization.

3.14. Marginalizing a Chance Variable Case 1
Suppose we have to marginalize a chance variable
C. First, we combine all probability potentials whose
domains include C, resulting in the potential, say, ï .
Next, we compute the marginal ïÉC . Then, we com-
pute the quotient 4ï ↵ ï

ÉC

5. The set of all probabil-
ity potentials whose domains include C are replaced
by the potentials ï

ÉC and 4ï ↵ ï

ÉC

5. The units of
4ï ↵ï

ÉC

5 are units of probability if C is discrete, and
4unitC5É1 if C is continuous. The operations described
so far are equivalent to the operations involved in arc
reversal (Olmsted 1983). Next, we combine all utility
potentials that include C in their domains, resulting
in utility potential, say, ì. The set of all utility poten-
tials that include C in their domains is now replaced
by the potential ì. Next, we replace ì and 4ï ↵ ï

ÉC

5

by the potential 4ì Ü 4ï ↵ ï

ÉC

55

ÉC , which must be a
utility potential. This concludes the end of the process
of marginalizing C. After marginalizing chance vari-
able C, there will not be any potentials that include C

in their domains.

3.15. Marginalizing a Decision Variable Case 1
Suppose we have to marginalize decision variable D.
First we combine all utility potentials that include D

in their domains, and then we combine the result-
ing utility potential with constraint potentials for D,
if any, resulting in utility potential, say, ì. Next, we
marginalize D from ì. All utility and constraint poten-
tials that include D in their domains are now replaced
by ì

ÉD. In the process of marginalizing D from ì,
we keep track of where the maximum is attained (as
a function of the remaining variables in the domain
of ì). This yields a decision function for the decision
variable. The collection of all decision functions con-
stitutes an optimal strategy for the ID.

After all variables have been marginalized, we end
up with a single utility potential for the empty set,
whose value represents the optimal utility associated
with an optimal strategy.

This general algorithm described above involves
divisions in the process of marginalizing a chance

variable. This step may be simplified in the case
where we have a single utility potential as follows.

3.16. Marginalizing a Chance/Decision Variable
Case 2

Suppose we have to marginalize a (chance or deci-
sion) variable X. First, we combine all potentials that
include X in their domains, resulting in potential, say,
ì, and then marginalize X from ì. The set of all poten-
tials that include X in their domains is replaced by
ì

ÉX . In this case, we cannot predict the nature of ìÉX ,
i.e., it may have hybrid units.

Notice that there are no divisions involved in this
process. When we have a single utility factor, combi-
nation always involves multiplication, which is asso-
ciative, and it follows from the axiomatic approach of
Shenoy and Shafer (1990) that we can find marginals
without doing any divisions. The process of solving
an ID can be described as finding the marginal for
the empty set by sequentially marginalizing all vari-
ables in a sequence that respects the information con-
straints. The first example (entrepreneur’s problem)
solved in §5 has a single utility factor, and thus, no
divisions are required.

Another special case where no divisions are nec-
essary is as follows. In the process of marginalizing
a chance variable C, suppose that there is only one
probability (discrete or continuous) potential, say, ï ,
that includes C in its domain. In this case, ï must be
the conditional for C given its parents, pa4C5. Thus,
ï

ÉC is an identity potential for pa4C5 (whose values
are all 1s). In this case also, we can skip the divi-
sions. If this is true for all chance variables C (this will
happen if the arcs into each chance variable are con-
sistent with the partial order representing the infor-
mation constraints and we pick a deletion sequence
consistent with all arcs in the ID), then we can use the
rules described in Case 2 above. The second exam-
ple (American put option problem) solved in §5 is an
example of this type, and no divisions are required.

Finally, we remark that one can always avoid
divisions by combining all utility potentials and
replacing the set of all utility potentials by the com-
bination. This may, however, increase the computa-
tional effort of solving an ID because the domain of
the single joint utility potential will have all deci-
sion variables in its domain and could potentially be
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large. Shenoy (1992) described a small example where
divisions are inescapable assuming that we wish to
use local computation and avoid computing on the
domain of all variables.

The algorithm described in this subsection is illus-
trated in §5 by solving two small hybrid IDs in com-
plete detail.

4. Mixture of Polynomials Functions
In this section, we define MOP functions and describe
some methods for finding MOP approximations of
univariate and two-dimensional conditional PDFs
and piecewise-linear approximations of nonlinear
deterministic functions. We illustrate our method for
the log-normal distribution. Shenoy and West (2011b)
describe MOP approximations of the PDFs of the
normal and chi-square univariate distributions, and
CLG distributions in two dimensions. Shenoy (2012)
describes MOP approximations of the CLG PDFs in
one, two, and three dimensions.

4.1. MOP Functions
The definitions of one-dimensional and multidimen-
sional MOP functions are taken from Shenoy (2012).

A one-dimensional function f 2 ✓!✓ is said to be a
MOP function if it is a piecewise function of the form

f 4x5

=

8
><

>:

a0i + a1ix+ · · ·+ a

ni

x

n for x 2A

i

1 i= 11 0 0 0 1k1

0 otherwise,
(7)

where A11 0 0 0 1Ak

are disjoint intervals in ✓ that do
not depend on x, and a0i1 0 0 0 1ani are constants for
all i. We will say that f is a k-piece (ignoring the
0 piece) and n-degree (assuming a

ni

6= 0 for some i)
MOP function.

An example of a two-piece, three-degree MOP func-
tion g14 · 5 in one dimension is as follows:

g14x5=

8
>>>>>>>>>><

>>>>>>>>>>:

0041035+ 0009499xÉ 0009786x2 É 0002850x3

if É 3< x < 01

0041035É 0009499xÉ 0009786x2 + 0002850x3

if 0 x < 31

0 otherwise3
(8)

g14 · 5 is a MOP approximation of the PDF of the stan-
dard normal distribution on the domain 4É3135 and
was found using Lagrange interpolating polynomials
with Chebyshev points, which will be discussed in
the next subsection.

The main motivation for defining MOP functions
is that such functions are easy to integrate in closed
form, and the family of MOP functions is closed
under multiplication, addition, integration, the main
operations in solving hybrid IDs. Also, because MOP
functions are easily differentiable, it is easy to maxi-
mize MOP functions in closed form.

A multivariate polynomial is a polynomial in sev-
eral variables. For example, a polynomial in two vari-
ables is as follows:

P 4x11x25 = a00 + a10x1 + a01x2 + a11x1x2 + a20x
2
1 + a02x

2
2

+ a21x
2
1x2 + a12x1x

2
2 + a22x

2
1x

2
20 (9)

The degree of the polynomial in Equation (9) is
4 assuming a22 is a nonzero constant. In general, the
degree of a multivariate polynomial is the largest sum
of the exponents of the variables in the terms of the
polynomial.

An m-dimensional function f 2 ✓m !✓ is said to be
a MOP function if

f 4x11x21 0 0 0 1xm5

=

8
>>><

>>>:

P

i

4x11x21 0 0 0 1xm5 for 4x11x21 0 0 0 1xm5 2A

i

1

i= 11 0 0 0 1k1

0 otherwise1

(10)

where P

i

4x11x21 0 0 0 1xm5 are multivariate polynomials
in m variables for all i, and the disjoint regions A

i

are
as follows. Suppose è is a permutation of 811 0 0 0 1m9.
Then, each A

i

is of the form

l1i  x

è415  u1i1

l2i4xè4155 x

è425  u2i4xè41551

(11)
0

0

0

l

mi

4x

è4151 0 0 0 1xè4mÉ155 x

è4m5

 u

mi

4x

è4151 0 0 0 1xè4mÉ1551

where l1i and u1i are constants, and

l

ji

4x

è4151 0 0 0 1xè4jÉ155 and u

ji

4x

è4151 0 0 0 1xè4jÉ155
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are linear functions of x

è4151xè4251 0 0 0 1xè4jÉ15 for j =
21 0 0 0 1m and i = 11 0 0 0 1k. We will refer to the
nature of the region described in Equation (11) as a
hyper-rhombus. Although we have defined the hyper-
rhombus as a closed region in Equation (11), each
of the 2m inequalities can be either strictly < or .
Notice that the definition of the region A

i

in the m-
dimensional case (in Equation (11)) is a generalization
of the requirement in the one-dimensional case (Equa-
tion (7)) that the regions A

i

are intervals.
A special case of the hyper-rhombus region A

i

is a
region of the form

l1i  x1  u1i1 l2i  x2  u2i1 0 0 0 1 lmi

 x

m

 u

mi

1 (12)

where l1i1 0 0 0 1 lmi

and u1i1 0 0 0 1umi

are all constants.
We refer to the region defined in Equation (12) as a
hypercube (in m dimensions).

An example of a two-piece, three-degree MOP
g24·1 ·5 defined on a two-dimensional hyper-rhombus
is as follows:

g24x1y5

=

8
>>>>>>>>>><

>>>>>>>>>>:

0041035+ 00094994yÉ x5É 00097864yÉ x5

2

É 00028504yÉ x5

3 if xÉ 3<y < x1

0041035É 00094994yÉ x5É 00097864yÉ x5

2

+ 00028504yÉ x5

3 if x y < x+ 31

0 otherwise3

(13)

g24x1y5 is a two-dimensional MOP approximation of
the PDF of the CLG distribution of Y ó x ⇠ N 4x1125
on the domain Éà< x <à1xÉ 3< y < x+ 3. Notice
that g24x1y5= g14y É x5, where g14 · 5 is as defined in
Equation (8).

4.1.1. Advantages of Hyper-Rhombus Regions.
One advantage of defining multidimensional MOP
functions on hyper-rhombuses is that MOP functions
are closed under transformations needed for mul-
tidimensional linear deterministic conditionals. For
example, consider the case where X, Y , and Z are
continuous variables, where X has PDF f

X

4x5, Y ó x
has conditional PDF f

Y óx4y5, and Z has a deter-
ministic conditional Z = X + Y , which is repre-
sented by the function Ñ4zÉ xÉ y5, where Ñ is the

Dirac delta function. Suppose that f

X

4x5 is a one-
dimensional MOP function, and suppose that f

Y óx4y5
is a two-dimensional MOP function (in x and y)
defined on hypercubes. Suppose we wish to find the
marginal of Z. After we marginalize Y (by comput-
ing

R à
Éà f

Y óx4y5Ñ4z É x É y5dy), we obtain the func-
tion f

Y óx4zÉ x5. Notice that even though f

Y óx4y5 was
defined on hypercubes, f

Y óx4zÉx5 is no longer defined
on hypercubes because we now have regions such as
l1i  zÉ x u1i, which is a hyper-rhombus.

Another advantage is that we can obtain MOP
approximations of CLG PDFs from a MOP approx-
imation of the univariate standard normal PDF
(Shenoy 2012). For example, suppose g14x5 is a MOP
approximation of the PDF of N 401125. Now suppose
Y ó x⇠N 4ax+ b1ë

2
5, where a, b, and ë are constants,

and ë 6= 0. We can find a MOP approximation of the
PDF of Y ó x as follows:

h4x1y5= 1
óë ó g1

✓
yÉ axÉ b

ë

◆
0 (14)

Notice that even though g14x5 is defined on
hypercubes, h4x1y5 is no longer defined on hyper-
cubes (because we now have regions such as l1i 
4y É ax É b5/ë  u1i). However, h4x1y5 is defined on
a hyper-rhombus region, and therefore is a MOP. The
MOP function g24x1y5 described in Equation (13) is
an instance of h4x1y5 when a= 1, b= 0, and ë = 1.

Finally, the hyper-rhombus region allows us to
find MOP approximations of conditional PDFs using
fewer pieces and lower degrees. Using hypercubes,
we were able to find a 16-piece, 18-degree MOP
approximation of a conditional log-normal PDF.
Using hyper-rhombuses, we found an eight-piece,
five-degree MOP approximation for the same condi-
tional log-normal PDF. This is because in the hyper-
rhombus case, we can truncate the region where the
PDF has very small values, and thus avoid the high
degree necessitated by the nonnegativity condition
of PDFs.

There are some disadvantages associated with
hyper-rhombus regions compared to hypercubes.
MOPs defined on hyper-rhombuses take longer
to integrate. After integration, MOPs defined on
hyper-rhombuses may have higher degrees. Some
comparisons of hyper-rhombuses versus hypercubes
appear in Shenoy (2012) and Shenoy et al. (2011).
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4.2. Finding MOP Approximations of
Univariate PDFs

In this subsection, we will describe a process for find-
ing a MOP approximation of a univariate PDF using
Lagrange interpolating polynomials with Chebyshev
points. In the next section, we will work with log-
normal PDFs. Therefore, we will use the log-normal
distribution for illustration purposes.

4.2.1. Lagrange Interpolating Polynomials. Sup-
pose we need to fit a polynomial for a one-
dimensional function f 4x5 in some interval 4a1 b5.
Given a set of n points 84x11 f 4x1551 0 0 0 1 4xn1 f 4xn559,
the Lagrange interpolating polynomial (LIP) P 4x5 is
given by

P 4x5=
nX

j=1


f 4x

j

5

nY

k=11k 6=j

xÉ x

k

x

j

É x

k

�
0 (15)

The polynomial P 4x5 has the following properties
(Burden and Faires 2010). It is a polynomial of
degree  4n É 15 that passes through the n points
84x11 f 4x1551 0 0 0 1 4xn1 f 4xn559, i.e., P 4xj5 = f 4x

j

5 for j =
11 0 0 0 1n. If f 4x5 is continuous and 4n+ 15-times dif-
ferentiable in an interval 4a1 b5, and x11 0 0 0 1xn are dis-
tinct points in 4a1 b5 such that x1 < · · ·< x

n

, then for
each x 2 4a1 b5, there exists a number é4x5 (generally
unknown) between x1 and x

n

such that

f 4x5= P 4x5+ f

4n+15
4é4x55

n! 4xÉ x154xÉ x25 · · · 4xÉ x

n

50

(16)

4.2.2. Chebyshev Points. One question in the use
of LIP is the choice of the points x11 0 0 0 1xn. For an
interval 4a1 b5, where b > a, the n Chebyshev points
are given by

x

i

= 1
2
4a+ b5+ 1

2
4bÉ a5 cos

✓
2iÉ 1
2n

è

◆
1

for i= 11 0 0 0n0 (17)

The Chebyshev points are often used with LIP
because the resulting polynomial approximation P 4x5

minimizes the quantity ó4x É x15 · · · 4x É x

n

5ó for all
x 2 4a1 b5, which is proportional to the absolute error
between the function f 4x5 and the LIP P 4x5 (see Equa-
tion (16)). The minimum value of ó4xÉ x15 · · · 4xÉ x

n

5ó
is 1/2nÉ1. Thus, as n increases, the maximum absolute
deviation decreases.

4.2.3. Finding a MOP Approximation for a PDF.
The construction of a k-piece, n-degree MOP g4x5 that
approximates a PDF f 4x5 on some domain 4l1u5 pro-
ceeds as follows. First, we compute the LIP polyno-
mial, say, g

u

4x5, for f 4x5 using n= 3 Chebyshev points
for the domain 4l1u5. Second, we check to see if g

u

4x5

is nonnegative over the entire domain (by comput-
ing the minimum of g

u

4x5 over the entire domain
and making sure it is positive). If not, we increase n

until we obtain nonnegativity. Because we are using
Chebyshev points, we are guaranteed to obtain non-
negativity for some n assuming f 4x5> 0 for x 2 4l1u5.
If the smallest degree n for which we obtain non-
negativity is too high (>5, e.g., for a one-dimensional
MOP), then we partition the domain into more pieces
and restart. Third, we normalize the fitted polynomial
g

u

4x5 so that it integrates to 1.
The procedure described in the previous paragraph

can be applied to any PDF, including, e.g., the class
of quantile-parameterized distributions described by
Keelin and Powley (2011). We will apply the above
procedure for a log-normal distribution. Suppose X ⇠
N 4å1ë

2
5 and Y = e

X . Then, we say, Y has the log-
normal distribution with parameters å and ë

2, writ-
ten as Y ⇠ LN 4å1ë

2
5. First, we need to decide on

the precision of the MOP approximation. The exact
domain of the PDF of Y is 401à5. For the stan-
dard normal distribution, the domain 4É3135 covers
99.7% of the total probability. Thus, we can approx-
imate the PDF of Y on the domain 4e

åÉ3ë
1 e

å+3ë
5.

If we need greater precision, we can approximate the
PDF of Y on a larger domain, e.g., on 4e

åÉ4ë
1 e

å+4ë
5,

which captures more than 99.99% of the total
probability.

Suppose S1 ⇠ LN 4å1ë

2
5, where å= ln4405+0000074

and ë

2 = 00132292 (these constants are obtained from
the American put option example described in §5.2).
The 0015 percentile of the PDF of S1 is 27003, and
the 99085 percentile is 59028. If we try to fit a
one-piece MOP approximation of the PDF of S1

using the above procedure, the result is an eight-
degree MOP on the domain 4270031590285. So we
partition the domain into two pieces, 4270031390345
and 6390341590285, where 39.34 is the mode of S1

(= e

åÉë

2 ). In this case, we find a two-piece, five-degree
MOP î

p14s15. A graph of the MOP approximation
î

p14s15 overlaid on the actual PDF î14s15 truncated to
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Figure 3 A Graph of îp1 (in Grey) Overlaid on î1 (in Dark Grey); the
Bottom Graph Shows the Difference î1 Éîp1 in the Curves
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4270031590285 is shown in Figure 3, and it shows that
there are not much differences between the two func-
tions. The mean of î

p14s15 is ⇡ 400370, and the mean
of î14s15⇡ 400371. The variance of î

p14s15 is ⇡ 270875,
and the variance of î14s15⇡ 270879.

The LIP method described for univariate PDFs
can also be applied for two-dimensional conditional
PDFs. A generalization of Lagrange interpolating
polynomials exists for two and higher dimensions
and its implementations exist in commercial software
such as Mathematica and Maple. Chebyshev points
are also defined in closed form for two-dimensional
regions by Xu (1996).

4.3. Finding Piecewise-Linear Approximations of
Deterministic Conditionals

In this subsection, we describe finding piecewise-
linear approximations of deterministic condition-
als. MOP functions are closed under transformation

required for multidimensional linear and quotient
functions. Thus, if we have a nonlinear deterministic
conditional (as we do in the entrepreneur’s problem),
then we need to approximate such conditionals by
piecewise linear functions.

Consider the nominal demand function f

Q

n

as a
function of price p in the range 1  p  47 given as
follows:

f

Q

n

4p5= 804ln 50É ln p5 if 1 p 470 (18)

Because f

Q

n

4p5 is not a linear function, the determin-
istic conditional Q

n

= f

Q

n

4P 5 (associated with Q

n

) is
not linear. Thus, we need to approximate f

Q

n

4p5 by a
piecewise linear function. We select a set of intermedi-
ate points in the interval 411475 and find a piecewise
linear approximation f

pQ

n

4p5 of this one-dimensional
function as follows:

f

pQ

n

4p5

=

8
>>>>>>>>>>>><

>>>>>>>>>>>>:

2250073É 43094454pÉ 35 if 1 p < 31
1570289É 1609464pÉ 75 if 3 p < 71
1070766É 80253864pÉ 135 if 7 p < 131
6904É 40795734pÉ 215 if 13 p < 211
280534É 209194pÉ 355 if 21 p < 351
4095003É 10965334pÉ 475 if 35 p 471
0 otherwise0

(19)

The number of intermediate points and the location
of the points were selected by trial and error. A graph
of f

pQ

n

4p5 versus p overlaid on the graph of f

Q

n

4p5

versus p is shown in Figure 4. The maximum abso-
lute percentage deviation between f

Q

n

4p5 and f

pQ

n

4p5

is 503% at p= 4305.

5. Two Examples
In this section, we illustrate our framework and
algorithm for solving hybrid IDs with determinis-
tic conditionals by solving two problems. The first
one is the entrepreneur’s problem described in §3,
and has continuous chance and deterministic con-
ditionals, a continuous decision variable, and one
(unfactored) utility function. The second problem is
an American put option described by Charnes and
Shenoy (2004). This problem has continuous chance
variables, discrete decision variables with continuous
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Figure 4 A Graph of fpQn 4p5 (in Grey) Overlaid on fQn 4p5 (in Dark
Grey); the Bottom Graph Shows the Difference fpQn É fQn in
the Curves
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chance predecessors, and an additive factorization
of the utility function. For some of the complicated
marginalization operations, we report the approxi-
mate time it takes Mathematica to do the opera-
tion (using the Timing command in Mathematica).
We used Mathematica version 7.0.1 on a MacBook Pro
laptop computer to do the computations.

5.1. Entrepreneur’s Problem.
We will solve the entrepreneur’s problem by mar-
ginalizing variables in the following sequence: C

a

1 Z21

C

n

1 Q

a

1 Z11 Qn

1 P 0 To avoid the integration and opti-
mization problems, we will approximate the contin-
uous potentials associated with Z1 and Z2 by MOP
potentials ù

p1 and ù

p2, respectively, and the nonlinear
deterministic functions associated with Q

n

and C

n

by
piecewise-linear functions f

pQ

n

and f

pC

n

, respectively.
Because we have a single utility potential, no divi-
sions are necessary during the solution process.

5.1.1. Marginalizing C

a

. First, we marginalize C

a

;
C

a

is in the domain of potentials ï
a

and è. Let poten-
tial è1 denote 4ï

a

Üè5

ÉC

a . Then,

è14p1 qa1 cn1z25 = 4ï

a

Üè5

ÉC

a

4p1 q

a

1 c

n

1z25

=
Z à

Éà
Ñ4c

a

É 4c

n

+ z255 · 4p · qa É c

a

5dc
a

= p · q
a

É 4c

n

+ z25 4utiles50 (20)

The result in Equation (20) follows from Property 1 of
Dirac delta functions.

5.1.2. Marginalizing Z2. Next, we marginalize Z2;
Z2 is in the domain of potentials ù

p2 and è1. Let ùp24z5

denote the two-piece, three-degree MOP approxima-
tion of ù24z5, the PDF associated with the standard
normal distribution, as described in Equation (8).

Let è2 denote 4ù

p2 Ü è15
ÉZ2 . Details of è2 are as

follows:

è24p1 qa1 cn5 = 4ù

p2 Üè15
ÉZ2

4p1 q

a

1 c

n

5

=
Z à

Éà
ù

p24z25 · 4p · qa É 4c

n

+ z255dz2

= p · q
a

É c

n

4utiles50 (21)

5.1.3. Marginalizing C

n

. Next we marginalize C

n

;
C

n

is in the domain of potentials ï

n

and è2. Let fpC
n

denote a three-piece piecewise-linear approximation
of the cost function f

C

n

as follows:

f

pC

n

4q

a

5=

8
>>>><

>>>>:

70501+ 9029q
a

if 2 q

a

< 421
844019+ 5098q

a

if 42 q

a

< 1041
11025087+ 4023q

a

if 104 q

a

 3161
0 otherwise.

(22)
The maximum absolute percentage deviation be-

tween f

pC

n

and f

C

n

is 2.3% at q

a

= 18064. The Dirac
potential associated with C

n

is ï

n

4c

n

1 q

a

5 = Ñ4c

n

É
f

pC

n

4q

a

55. Let è3 denote 4ï

n

Üè25
ÉC

n . Details of è3 are
as follows:

è34p1 qa5 = 4ï

n

Üè25
ÉC

n

4p1 q

a

5

=
Z à

Éà
4pq

a

É c

n

5 · Ñ4c
n

É f

pC

n

4q

a

55dc
n

= pq

a

É f

pC

n

4q

a

5 4utiles50 (23)
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5.1.4. Marginalizing Q

a

. Next, we marginalize
Q

a

; Q
a

is in the domain of potentials à

a

and è3. Let
è4 denote 4à

a

Üè35
ÉQ

a details of è4 are as follows:

è44p1 qn1z15 = 4à

a

Üè35
ÉQ

a

4p1 q

n

1z15

=
Z à

Éà
Ñ4q

a

É 4q

n

+ z155 · 4p · qa É f

pC

n

4q

a

55dq
a

= p · 4q
n

+ z15É f

pC

n

4q

n

+ z15 4utiles50 (24)

Notice that è4 is a MOP function.

5.1.5. Marginalizing Z1. Next, we marginalize Z1,
which is in the domain of potentials ù

p1 and è4. Let
è5 denote 4ù

p1 Üè45
ÉZ1 ; è5 is computed as follows:

è54p1 qn5 = 4ù

p1 Üè45
ÉZ1

4p1 q

n

5

=
Z à

Éà
ù

p14z15 · 4p4qn + z15É f

pC

n

4q

n

+ z155dz1

= p · q
n

É
Z à

Éà
f

pC

n

4q

n

+ z15 ·ùp14z15dz10 (25)

Notice that because ù

p1 and f

pC

n

are MOP functions,
è5 is also a MOP function (15 pieces, 5 degree).
It takes Mathematica about 3.7 seconds to do the inte-
gration in Equation (25).

5.1.6. Marginalizing Q

n

. Next, we marginalize
Q

n

; Q
n

is in the domain of potentials à
n

and è5. Let è6

denote 4à

n

Üè55
ÉQ

n . The details of è6 are as follows:

è64p5 = 4à

n

Üè55
ÉQ

n

4p5

=
Z à

Éà
Ñ4q

n

É f

pQ

n

4p55 ·è54p1 qn5dqn

= è54p1 fpQ
n

4p550 (26)

Because f

pQ

n

4p5 is a piecewise-linear function, and è5

is a MOP function, è64p5 is a MOP function; è6 is com-
puted as a 15-piece, 5-degree MOP function. It takes
Mathematica about 14.8 seconds to do the integration
in Equation (26).

5.1.7. Marginalizing P . Figure 5 shows a graph of
è64p5 versus p. Finally, we marginalize P . The max-
imum utility is 234012 utiles at p = $25076 per wid-
get. It takes Mathematica 0.15 seconds to marginalize
P from è6. For comparison, when demand and sup-
ply are known with certainty, the problem reduces to
a nonlinear optimization problem and the maximum
utility 198 utiles is obtained when price is $24010 per
widget.

Figure 5 A Graph of è64p5 vs. p
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5.2. An American Put Option Problem
This problem is adapted from Charnes and Shenoy
(2004). An option trader has to decide whether or
not to exercise a seven-month put option with ini-
tial stock price S0 = $40 and exercise price X = $35.
A put option on a stock provides the owner of the
option the right to sell one share of the stock at
the exercise price during the period of the option.
For example, if the price of the stock dips to, say,
$30, during the option period, then the owner of
the option described above can buy one share at
$30 and sell it for $35, with a realized profit of $5.
In reality, the option can be exercised at any time
before the expiration of the option. For modeling pur-
poses, we assume that the option is available for exer-
cise at three equally spaced decision points over a
seven-month period. Following standard practice in
the financial literature, the stock prices, S11S21 0 0 0 1Sk,
evolve according to the discrete stochastic process:
S

j

= S

jÉ1 · Y , where Y ⇠ LN 44r É ë

2
/25„t1ë2

„t5, for
j = 1121 0 0 0 1k, S

j

is the stock price (in dollars) at time
j„t, r is the risk-less interest rate (per year), ë is the
stock’s volatility (per year), T denotes the length of
the option (in years), and „t = T /k. We assume r =
000488 per year, T = 005833 years, „t = 001944 years,
k= 3 stages, and ë = 003 per year (these constants are
borrowed from Geske and Johnson 1984, which pro-
vides an analytic value of the option for comparison
purposes). Thus, S1 ⇠ LN 4ln 40 + 00000741001322925,
S2 ó s1 ⇠ LN 4ln s1 + 00000741001322925, and S3 ó s2 ⇠
LN 4ln s2 + 00000741001322925. An ID representation of
the problem is shown in Figure 6.

The state space of D1 is 8e11h19, i.e., exercise or
hold. The constraints for the decision nodes D2 and D3
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Figure 6 An Influence Diagram Representation of the American Put Option Problem

S1 S2 S3

D1 D2 D3

S2 | s1 ~ LN(ln(s1)+0.00074, 0.132292) S3 | s2 ~ LN(ln(s2)+0.00074, 0.132292)S1 ~ LN(ln(40)+0.00074, 0.132292)

π1 π2 π3

π1(e1, s1) = 0.99056 max{35–s1, 0}
π1(h1, s1) = 0

π2(e2, s2) = 0.98120 max{35–s2, 0}
π2(h2, s2) = π2(nc2, s2) = 0

π3(e3, s3) = 0.97193 max{35–s3, 0}
π3(h3, s3) = π3(nc3, s3) = 0

ΩD1
 = {e1, h1} ΩD2

 = {e2, h2, nc2} ΩD3
 = {e3, h3, nc3}

in the problem are shown in Figure 7, where e

i

1h

i

,
and nc

i

denote the alternatives: exercise, hold, and
no choice, respectively, for decision D

i

, i = 213. The
only possible decision for stage i is no choice if
the stock was exercised at a prior time. The addi-
tive factors of the utility function are è

j

4d

j

1 s

j

5 =
e

Érj„t max 835É s

j

109, if d
j

= e

j

, and è

j

= 0 otherwise.
The e

Érj„t is a discount factor to translate future prof-
its back to the present (j = 0). As in the entrepreneur’s
problem, we assume that the decision maker’s utili-
ties for profits are linear in dollars.

We approximate the marginal PDF of S1 by a MOP
function î

p14s15. Also, the MOP approximations of the
conditional PDFs for S2 ó s1 and S3 ó s2 are denoted by
ñ

p24s11 s25 and ñ

p34s21 s35, respectively. Also, we model
the constraints on the choices at D2 and D3 by con-
straint potentials ï2 for D2 in 8D11D29 and ï3 for D3

in 8D21D39. The values of ï2 and ï3 are 1s for the pos-
sible states (as shown in Figure 7) and 0s for the rest.

Figure 7 Constraints on D2 and D3

h2

h1

e2

e1 nc2

D2

D1

D2

D3

D2

D3

h3

h2

e3

e2, nc2 nc3

The potentials in the problem are as follows (name,
domain, and units):

è31 for 8S31D391 utiles3
ï31 for D3 2 8D21D391 no units3
ñ

p31 for 8S21S391 4$5É1
3

ï21 for D2 2 8D11D291 no units3
è21 for 8S21D291 utiles3
ñ

p21 for 8S11S291 4$5É1
3

è11 for 8S11D191 utiles3
î

p11 for 8S191 4$5É1
0

The information constraints in the ID constrain
us to marginalize the variables in the following
sequence: D31S31D21S21D11S1. Because the condi-
tional arcs for S1, S2, and S3 are consistent with the
partial order determined by the information con-
straints, no divisions are required.

5.2.1. Marginalizing D3 and S3 First we marginal-
ize D3. Because D3 is in the domains of potentials è3

and ï3, we first combine these and then marginal-
ize D3 from the combination. Let è

0
3 denote 4ï3 Ü

è35
ÉD3 . The units of values of è

0
3 are utiles. Because

è34e31 s35�è34h31 s35 and è34e31 s35�è34nc31 s35 for all
values of s3 < 35, the details of è 0

3 are as follows:

è

0
34d21 s35=

8
><

>:

0097max 835É s3109 if d2 = h21

0 otherwise.
(27)

Thus, the optimal strategy of stage 3 would be to
exercise the option if the observed value of S3 < 35,
assuming this alternative is available (i.e., the option
has not been exercised earlier), and to abandon the
option if the observed value of S3 � 35.
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Next, we marginalize S3, which is in the domains of
ñ

p3 and è

0
3. Let è 00

3 denote 4ñ

p3 Üè

0
35

ÉS3 . The units of
values of è 00

3 are in utiles. Details of è 00
3 are as follows:

è

00
3 4d21 s25

=

8
><

>:

R 35
0 è

0
34d21 s35 ·ñp34s21 s35ds3 if d2 = h21

0 otherwise.
(28)

Because è

0
3 and ñ

p3 are MOP functions, è 00
3 is a MOP

function (four piece, nine degree).
Similarly, we marginalize the remaining variables.

The optimal decision function at stage 2 is to exer-
cise the option if the observed stock price is less than
$24.75 (assuming this option is available) or otherwise
hold it for the next stage. The optimal decision func-
tion in stage 1 is to exercise the option when the stock
price is less than $28.15 or otherwise hold it for the
next stage. The optimal value of the option is com-
puted as $1.219.

Our result is comparable to the financial analytic
result $1.219 (using the Black and Scholes (1973)
option pricing theory computed analytically by Geske
and Johnson (1984)), and the result $1.224 computed
by Monte Carlo method using 30 stages (Charnes and
Shenoy 2004).

One practical benefit of solving this ID exactly is
that not only do we get the value of the option (which
is the focus of option pricing theory), we also get a
strategy for exercising the option. The financial ana-
lytic result provides only the value of the option.
The Monte Carlo method proposed by Charnes and
Shenoy (2004) provides an approximate strategy by
providing bounds on when to exercise the option.
Our technique provides an exact strategy for the ID
in which the conditional PDFs are approximated by
MOP functions.

6. Summary and Conclusions
The main contribution of this paper is a framework
and an algorithm for solving hybrid IDs with discrete
and continuous chance variables, discrete and contin-
uous decision variables, and deterministic condition-
als for continuous chance variables.

First, the extended Shenoy–Shafer architecture for
making inferences in hybrid BNs proposed by Shenoy
and West (2011a) has been further extended to include

decision variables and utility functions. Second, we
propose approximating conditional PDFs and util-
ity functions by MOPs, and approximating nonlinear
deterministic functions for continuous chance vari-
ables by piecewise linear functions. We have illus-
trated our framework and algorithm by solving two
small hybrid IDs.

Two main problems in solving hybrid IDs are
marginalization of continuous chance variables and
marginalization of continuous decision variables. For
decision problems that can be solved without divi-
sions, one solution is to approximate conditional
PDFs and utility functions by MOP functions, and
nonlinear deterministic conditionals by piecewise
linear functions. MOP functions are closed under
multiplication, addition, integration, and under trans-
formations needed for linear deterministic condition-
als. However, they are not closed under divisions.
Thus, MOP approximations could be used to miti-
gate the problems associated with marginalization of
continuous chance and continuous decision variables
when no divisions are needed. Also, it is relatively
easier to maximize a utility function that is expressed
in MOP form with a low degree. By solving for all real
roots of a low-degree polynomial in closed form, we
can compute a global maximum of the utility func-
tion as a function of other continuous variables in
closed form.

There are two classes of decision problems that
can be solved using local computation without doing
any divisions. First, if we have a single utility func-
tion (with no additive factors), then combination is
always multiplication, which is associative, and the
axioms for local computations (see Shenoy and Shafer
1990) are satisfied by the combination and marginal-
ization operations without needing any divisions. The
entrepreneur’s problem is an example of this genre.
Second, if we have a decision problem where the arcs
pointing to chance variables are consistent with the
partial order determined by information constraints,
then again no divisions are necessary. The American
put option is an example of this genre. Also, Markov
reward processes, where the arcs always point for-
ward in time (from state S4t5 to state S4t + 15), are a
class of problems where divisions are not required.
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6.1. Limitations
For more general decision problems where divisions
are needed to solve a problem using local computa-
tion, the method described in this paper will not work.
The family of MOP functions is not closed under the
division operation. Thus, if we divide a MOP func-
tion by another MOP function, the resulting function
may not be a MOP, in which case there are no guar-
antees that we can integrate such functions in closed
form. The Pigs problem, discussed by Lauritzen and
Nilsson (2001), is an example of a problem of this type
(requiring divisions for solution using local computa-
tion). In general, if we have an additive factorization
of the joint utility function, and arc reversals are neces-
sary for solution, then such problems cannot be solved
using local computation by using MOPs.

Our method based on MOPs inherits all the prob-
lems and issues that are inherent with the MOP
method. First, we need to find MOP approxima-
tions of PDFs and utility functions. We can find
MOP approximations by using Lagrange interpo-
lating polynomials with Chebyshev points, but it
needs manual interventions regarding the location
of knots that make up the pieces. Currently, we
have some heuristics (mode, inflection points, equal
width, etc.), but no theory for this decision. Except
for this issue, we can automate the process of find-
ing MOP approximations of conditional PDFs, and
the process of solving hybrid IDs containing deter-
ministic conditionals. Lagrange interpolating polyno-
mials for one- and higher-dimensional functions can
be easily found using commercial software (such as
Mathematica, Maple, Matlab, etc.). The LIP method
does not require that the function being approxi-
mated be differentiable. The theory of Chebyshev
points exists for one- and two-dimensional functions.
Also, we can use a MOP approximation of the one-
dimensional standard normal PDF to construct MOP
approximations of higher-dimensional CLG PDFs.
However, constructing tractable MOP approximations
of high-dimensional non-CLG PDFs (such as a three-
dimensional log-normal PDF) can be a challenge.

6.2. Future Work
How does the MOP method compare with the dis-
cretization and Monte Carlo methods? This is an
important question that needs to be answered and

for which we do not have answers. At this stage,
we note that discretization has only been studied for
one-dimensional PDFs. Although this can be naïvely
applied to multidimensional conditional PDFs, the
quality of the resulting approximation has not been
studied. For the conditional PDFs in the American
put option problem, one could, e.g., find a three-
point discrete approximation of the PDF of S1; a three-
point discrete approximation of the conditional PDF
of S2 ó s1 for each of the three values of S1, resulting
in up to 32 = 9 distinct values of S2; a three-point dis-
crete approximation of the PDF of S3 ó s2 for each of
the nine distinct values of S2, resulting in up to 33 = 27
distinct values of S3; etc. Clearly, such a strategy is
not tractable for many stages. Also, we cannot imag-
ine obtaining a strategy as detailed as the one we
obtain in stage 1 (exercise the option in stage 1 if the
observed value of S1 is less than 29016, and hold oth-
erwise) from a discretized model with only three pos-
sible values of S1. Finally, we note that Markov chain
Monte Carlo methods wouldn’t converge for a proba-
bility model that includes deterministic conditionals.

How close is the approximate solution found
by using our method to the true answer? This is
another important question for which we do not have
answers. We note that the errors in the MOP approx-
imation of conditional PDFs can be quantified using
measures such as the Kullback and Liebler (1951)
divergence and maximum absolute deviation between
the MOP approximation and the target PDF (Shenoy
2012). In terms of these measures, the approximations
have very small errors. For example, the Kullback
and Liebler (1951) divergence between the standard
normal PDF truncated to 4É3135 and the two-piece,
three-degree MOP approximation described in Equa-
tion (8) is 0.009, and the maximum absolute devia-
tion between the two functions is 0.014. However, we
do not know how these errors influence the errors
in the optimal strategy and the errors in the maxi-
mum expected utility. This is a topic that needs fur-
ther research.

What is the size of decision problems that can be
solved by our method? This is yet another impor-
tant question for which we do not have answers. We
plan to solve the American put option problem by
gradually increasing the number of stages and observ-
ing where the method breaks down, if at all. The
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main problem here is computing a MOP approxima-
tion of the conditional for S

j

ó s
jÉ1. As we change the

number of stages, we need to recompute all of the
MOP approximations of the conditional PDFs. This is
another topic for further research.
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Appendix. Properties of Dirac Delta Functions
Two basic properties of Dirac delta functions are as follows
(see, e.g., Dirac 1927, 1958; Hoskins 1979; Kanwal 1998).

1. (Sampling) If f 4x5 is any function that is continuous in
the neighborhood of a, then

Z à

Éà
f 4x5 Ñ4xÉ a5dx= f 4a50 (29)

2. (Rescaling) If g4x5 has real (noncomplex) zeros at
a11 0 0 0 1an and is differentiable at these points, and g

0
4a

i

5 6= 0
for i= 11 0 0 0 1n, then

Ñ4g4x55=
nX

i=1

Ñ4xÉ a

i

5

óg0
4a

i

5ó 0

Amore extensive list of properties of the Dirac delta func-
tion that are relevant for uncertain reasoning can be found
in Cinicioglu and Shenoy (2009).
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