
A Note on Factorization of Belief Functions
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Abstract. Practically all methods for efficient computation with multidimensional models take
advantage of the fact that the model in question in a way factorizes. It means that it is possible to
decompose the model into its low-dimensional parts, each of which can be defined with a reasonable
number of parameters. This is a basic idea of computation with probabilistic Graphical Markov
Models as well as with belief or credal networks. For belief functions, two types of factorization
were designed in the literature: one is based on the famous Dempster’s rule of combination, the
other uses an operator of composition. The paper compares these two types of factorization, shows
that both the approaches are equivalent to each other in case of unconditional factorization and
shows what are the differences when overlapping factorization is studied.

Keywords: belief functions, conditional independence, irrelevance, multidimensional models

1 Probabilistic motivation

In probability theory, notions of independence, factorization, irrelevance and conditional probability
are closely interconnected [4, 10]. Consider two random variables X and Y and their joint probability
distribution π(X,Y ). We say X and Y are independent with respect to π, written as X⊥⊥Y [π], iff

π(X,Y ) = π(X) · π(Y ), (1)

where π(X) = π↓X , π(Y ) = π↓Y denote the respective marginal one-dimensional distributions. It means
that the joint distribution π(X,Y ) is uniquely represented just by its one-dimensional marginals. We
also say that π(X,Y ) factorizes into its respective marginals. It is well-known that if the conditional
distribution π(X|Y ) is defined then X⊥⊥Y [π] iff

π(X|Y ) = π(X). (2)

The last formula expresses the fact that knowledge of a value of variable Y does not change our knowledge
regarding the value of variable X. Therefore, we will refer to this property as irrelevance. In connection
with this two-dimensional case we want to recall one more property, usually called factorization lemma,
saying that X⊥⊥Y [π] iff there exist two real-valued functions φ and ψ defined on the sets of values of
variables X and Y , respectively, such that for all tuples (x, y) ∈ X×Y (X,Y denote the sets of values of
variables X and Y , respectively)

π(X = x, Y = y) = φ(x) · ψ(y). (3)

All these concepts generalize also to the case of conditional independence. Consider a joint distribution
π(X,Y, Z) of three random variables. We say thatX and Y are conditionally independent given Z, written
as X⊥⊥Y |Z [π], iff

π(X,Y, Z) · π(Z) = π(X,Z) · π(Y,Z), (4)

which is known to be equivalent to (in case that π(Y |Z) is defined)

π(X,Y, Z) = π(X,Z) · π(Y |Z). (5)

It means that X⊥⊥Y |Z [π] iff π(X,Y, Z) factorizes into its (conditional) marginals. Nevertheless, due
to the famous factorization lemma it is known that it is also equivalent to the fact that there exist two
real-valued functions φ and ψ defined on the sets X×Z and Y×Z, respectively, such that for all triples
(x, y, z) ∈ X× Y× Z

π(X = x, Y = y, Z = z) = φ(x, z) · ψ(y, z). (6)



Thus, in probability theory, conditional independence and both types of factorization (i.e., factorization
into marginals and general factorization into “potential functions”) are fully equivalent. And, let us stress
that if conditional probability distributions π(X|Y ) and π(X|Y,Z) are defined, it is also equivalent to
the notion of irrelevance, which correspond in this conditional case to the formula

π(X|Y,Z) = π(X|Z). (7)

So, from probability theory we are accustomed to the fact that the notions of factorization (both
types), conditional independence and conditional irrelevance fully coincide. The goal of this paper is to
show on a couple of examples that for belief functions the situation is much more complicated.

2 Basic notions and notation

2.1 Set notation

As in the previous section we will consider three variables X,Y, Z having finite sets of values X,Y,Z,
respectively.

A projection of a = (x, y, z) ∈ X × Y × Z into X will be denoted a↓X , i.e., a↓X = x. Analogously,
a↓XY = (x, y). Similarly, for A ⊂ X× Y× Z, A↓Z will denote a projection of A into Z:

A↓Z = {z ∈ Z | ∃a ∈ A : z = a↓Z}.

Analogously,
A↓XZ = {(x, z) ∈ X× Z | ∃a ∈ A : (x, z) = a↓XZ}.

Let us remark that A↓∅ = ∅.
In addition to the projection, in this text we will need also an opposite operation, which will be called

a joint. By a joint of two sets A ⊆ X× Z and B ⊆ Y× Z we will understand a set

A ./ B = {a ∈ X× Y× Z : a↓XZ ∈ A & a↓Y Z ∈ B}.

Let us add that for A ⊆ X and B ⊆ Y we get

A ./ B = A×B,

and for A,B ⊂ X× Y× Z
A ./ B = A ∩B.

2.2 Basic notation for belief functions

In evidence theory (or Dempster-Shafer theory) two measures are used to model the uncertainty: belief
and plausibility measures. Both of them can be defined with the help of another set function called a
basic (probability or belief) assignment m. It is a set function

m : P(X× Y× Z) −→ [0, 1],

(P(X × Y × Z) denotes a power set of X × Y × Z), for which
∑

A⊆X×Y×Zm(A) = 1. Furthermore, we

assume that m(∅) = 0. A set A ⊆ X× Y× Z is said to be a focal element of m if m(A) > 0.
In addition to belief and plausibility measures, which will not be discussed in this paper, also com-

monality function can be obtained from basic assignment m:

Q(A) =
∑

B⊆X×Y×Z:A⊆B
m(B).

For a basic assignment m on X × Y × Z, its marginal basic assignments will be used. For example
(for each A ⊆ X),

m↓X(A) =
∑

B⊆X×Y×Z:B↓X=A

m(B).

Analogously, Q↓X will denote the respective marginal commonality function.



Regarding the Dempster-Shafer theory of evidence, perhaps the most important notion is the Demp-
ster’s rule of combination ([5]) defined for two basic assignments m1 and m2 on X×Y×Z by the formula
(for all A ⊆ X× Y× Z)

m1 ⊕m2(A) =
1

K

∑
B,C⊆X×Y×Z:A=B∩C

m1(B) ·m2(C),

where K = 1−
∑

B,C⊆X×Y×Z:B∩C=∅m1(B)·m2(C). For the purpose of this paper it is important to stress
that this rule of combination is defined also for basic assignments which are not defined on the same
space of discernment. For example, for m1 defined on X×Z and m2 defined on Y×Z their combination
is defined for all A ⊆ X× Y× Z

m1 ⊕m2(A) =
1

K

∑
B⊆X×Z,C⊆Y×Z:A=B./C

m1(B) ·m2(C), (8)

where K = 1−
∑

B⊆X×Z,C⊆Y×Z:B./C=∅m1(B) ·m2(C). Similarly, for m1 defined on X×Y and m2 defined
on Y their combination is defined for all A ⊆ X× Y

m1 ⊕m2(A) =
1

K

∑
B⊆X×Y,C⊆Y:A=B./C

m1(B) ·m2(C), (9)

where, again, K = 1−
∑

B⊆X×Y,C⊆Y:B./C=∅m1(B) ·m2(C).

It is well-known [8] that the Dempster’s rule of combination, when observed through commonality
functions, manifests itself as a simple multiplication of the respective commonality functions. For example,
when considering m1 and m2 from formula (9), this expression simplifies to

(Q1 ⊕Q2)(A) = Q1(A) ·Q2(A↓Y ).

This enables us to define an operation that is an inverse of the Dempster’s rule of combination.
Consider a basic assignment m defined on X × Y. By m 	 m↓Y we understand that basic assignment
whose commonality function is defined by the following expression

(Q	Q↓Y )(A) = Q(A)/Q↓Y (A↓Y ). (10)

Such an inverse operation enables us to remove the information contained in m↓Y from the joint basic
assignment m. This is why we can call this basic assignment conditional basic assignment and will denote
it sometimes m(X|Y ). However, it is important to realize that Q	Q↓Y is not always a basic assignment.

2.3 Example 1

Let X,Y be binary variables with values in X = {ξ, ξ̄}, Y = {η, η̄}. Consider first basic assignment m1

with two focal elements: m1({(ξ, η)}) = 0.4 and m1({(ξ, η), (ξ, η̄)}) = 0.6. The reader can easily verify

that its marginal m↓Y1 has two focal elements: m↓Y1 ({η}) = 0.4 and m↓Y1 ({η, η̄}) = 0.6, and that the

respective commonality function is Q↓Y1 ({η}) = 1, Q↓Y1 ({η̄}) = 0.6, Q↓Y1 ({η, η̄}) = 0.6. The commonality
function for m1 is in Table 2.3 (there is no focal element of m1 with more than two couples from
X×Y, which means that for all three or four-point sets, which are not explicitly described in Table 2.3,
the respective commonality function equals 0). Thus, using formula (10) we can easily compute the

commonality function corresponding to m1	m↓Y1 , which is a conditional basic assignment m(X|Y ). All
these computations are depicted in Table 2.3.

Considering another basic assignment m2 on the same frame of discernment X×Y having again only
two focal elements: m2({(ξ, η̄), (ξ̄, η̄)}) = m2({(ξ, η̄), (ξ̄, η)}) = 0.5, one can immediately see that m↓Y2 has

again two focal elements, namely m2({η̄}) = m2({η, η̄}) = 0.5. To compute Q2	Q↓Y2 we need common-

ality function Q↓Y2 which is (because m↓Y2 ({η}) = 0): Q↓Y2 ({η}) = 0.5, Q↓Y2 ({η̄}) = 1, Q↓Y2 ({η, η̄}) = 0.5.

But this time trying to get m2(X|Y ) = m2 	m↓Y2 one gets the only solution for which m2(X = ξ|Y =
η̄) = −0.5, which does not comply with the definition of a basic assignment.



Table 1. Basic assignments and their commonality functions

A m1 Q1 Q1 	Q↓Y
1 m1(X|Y ) m2 Q2 Q2 	Q↓Y

2 m2(X|Y )

(ξ, η) 0.4 1 1 0 0 0 0 0

(ξ, η̄) 0 0.6 1 0 0 1 1
1

= 1 −0.5

(ξ̄, η) 0 0 0 0 0 0.5 0.5
0.5

= 1 0

(ξ̄, η̄) 0 0 0 0 0 0.5 0.5
1

= 0.5 0

(ξ, η), (ξ, η̄) 0.6 0.6 1 1 0 0 0 0

(ξ, η), (ξ̄, η) 0 0 0 0 0 0 0 0

(ξ, η), (ξ̄, η̄) 0 0 0 0 0 0 0 0

(ξ, η̄), (ξ̄, η) 0 0 0 0 0.5 0.5 0.5
0.5

= 1 1

(ξ, η̄), (ξ̄, η̄) 0 0 0 0 0.5 0.5 0.5
1

= 0.5 0.5

(ξ̄, η), (ξ̄, η̄) 0 0 0 0 0 0 0 0

3 Unconditional independence and factorization

After reading the section on probabilistic motivation, it is perhaps not so surprising that a generally
accepted notion of (unconditional, or marginal) independence can be introduced in several ways [1, 3, 9,
10]. Perhaps the simplest one is the following one.

Definition 1. Let m be a basic assignment on X×Y. We say that variables X and Y are independent,
written as X⊥⊥Y [m], if for all A ⊆ X× Y

Q(A) = Q↓X(A↓X) ·Q↓Y (A↓Y ).

In [7], the following assertion was proved.

Proposition 1. X⊥⊥Y [m] iff
m(A) = m↓X(A↓X) ·m↓Y (A↓Y ) (11)

for all A ⊆ X× Y for which A = A↓X ×A↓Y , and m(A) = 0 otherwise.

Thus we see that for independent variables both the basic assignment and the commonality function
factorize like a probability distribution factorizes for independent random variables. Nevertheless, since
we are studying notions of independence within the Dempster-Shafer theory of evidence, the following
assertion is of great importance.

Proposition 2. X⊥⊥Y [m] iff
m = m↓X ⊕m↓Y . (12)

The question remains whether there is some property that would be a belief function counterpart to
probabilistic irrelevance expressed by formula (2). And it is an easy task to show that such a property
holds true. Because

m	m↓Y = m↓X ⊕m↓Y 	m↓Y = m↓X . (13)

The above modifications are based on associativity of Dempster’s rule of combination and its inverse,
which follows trivially from the associativity of multiplication and division of commonality functions.

Remark 1. From equalities (13) one can see that if X⊥⊥Y [m] than m 	 m↓Y is always defined. Nev-
ertheless, the reader certainly noticed that while m 	 m↓Y is defined on X × Y, the marginal m↓X is
defined only on X. This discrepancy can be easily explained: in this case m	m↓Y is always a “vacuous
extension” of m↓X , which means that if A is a focal element of m↓X , then A × Y is a focal element of
m	m↓Y , and m↓X(A) = m	m↓Y (A× Y).

Though it will not be shown until in the next paragraph (Proposition 5), let us mention already here
that for this unconditional case even the general factorization lemma holds true (its probabilistic version
is expressed by formula (3)). So we can summarize that unconditional independence and factorization for
belief functions (or rather for basic assignments) manifests the same properties as within the framework
of probability theory (including the fact that a conditional basic assignment is not always unambiguously
defined).



4 Conditional independence and factorization

Let us start this section with presenting the definition which is used by many authors (though different
authors call the notion in different ways) [2, 3, 9] and which is different from the one introduced in [7].

Definition 2. Let m be a basic assignment on X×Y×Z. We say that variables X and Y are conditionally
independent given Z (in notation X⊥⊥Y |Z [m]) if for all A ⊆ X× Y× Z

Q(A) ·Q↓Z = Q↓XZ(A↓XZ) ·Q↓Y Z(A↓Y Z).

Taking into account properties of commonality functions, one gets almost immediately the following
property that forms a conditional version of Proposition 2.

Proposition 3. X⊥⊥Y |Z [m] iff
m = m↓XZ ⊕m↓Y Z 	m↓Z , (14)

if the right hand part of this formula is defined.

Let us present one more property that was proved in [2] and that will appear quite important from
the point of view of factorization. We will call it a weak factorization lemma.

Proposition 4. If X⊥⊥Y |Z [m] than all focal elements A of m are of the form A = A↓XZ ./ A↓Y Z .

4.1 General factorization

Let us start studying the question whether there is a relation between X⊥⊥Y |Z [m] and an existence of
two real-valued set functions

φ : P(X× Z) −→ [0,+∞),

ψ : P(Y× Z) −→ [0,+∞),

such that for all A ⊆ X× Y× Z
m(A) = φ(A↓XZ) · ψ(A↓Y Z). (15)

First of all, realize that if we want to factorize a basic assignment m for which the conditional
independence X⊥⊥Y |Z [m] should hold, then, due to the above presented weak independence lemma
(Proposition 4), we must require validity of equality (15) only for the sets that can be expressed as a
join of their projections: A = A↓XZ ./ A↓Y Z . In what follows we will take advantage of the following
factorization lemma that was first proved in [11]. However, in this assertion a new type of a binary
operator appears, which is called an operator of composition, and therefore its definition has to precede
the presentation of the mentioned factorization lemma.

Definition 3 (Operator of composition). Let m1 be a basic assignment on X×Z and m2 on Y×Z.
A composition m1 . m2 is defined for each C ⊆ X× Y× Z by one of the following expressions:

[a] if m↓Z2 (C↓Z) > 0 and C = C↓XZ ./ C↓Y Z then

(m1 . m2)(C) =
m1(C↓XY ) ·m2(C↓Y Z)

m↓Z2 (C↓Z)
;

[b] if m↓Z2 (C↓Z) = 0 and C = C↓XZ × Y then

(m1 . m2)(C) = m1(C↓XZ);

[c] in all other cases (m1 . m2)(C) = 0.

Proposition 5 (General factorization lemma). Let m be a basic assignment on X × Y × Z. Then
there exist real-valued set functions

φ : P(X× Z) −→ [0,+∞),

ψ : P(Y× Z) −→ [0,+∞),

such that for all A ⊆ X× Y× Z

m(A) =

{
φ(A↓XZ) · ψ(A↓Y Z) if A = A↓XZ ./ A↓Y Z ,
0 otherwise.

(16)

iff m = m↓XZ . m↓Y Z .



Remark 2. Notice that for basic assignments m1 on X and m2 on Y the definition of m1 . m2 simplifies
to

m1 . m2(A) =

{
m1(A↓X) ·m2(A↓Y ) if A = A↓X ×A↓Y ,
0 otherwise,

which corresponds to the definition of X⊥⊥Y [m1 . m2]. Therefore, for unconditional independence,
Proposition 5 is a characterization of the general factorization promised at the end of Section 3.

4.2 Comparison of the Dempster’s rule of combination and the operator of composition

First of all, let us stress that the operator of composition is something other than the Dempster’s
rule of combination (or its non-normalized version, the so called conjunctive combination rule [1]). For
example, the operation of composition is neither commutative nor associative. While Dempster’s rule of
combination was designed to combine different (independent) sources of information (it realizes fusion of
sources), the operator of composition primarily serves for composing pieces of local information (usually
coming from one source) into a global model. The difference between these two tasks can be illustrated by
the following analogy. The Dempster’s rule of combination is appropriate when one wants to reconstruct
an image of a person from a number of fuzzy, out of focus pictures. On the other hand, the operator of
composition is to be used when one wants to reassemble a picture that was teared into a great number
of small pieces.

From what was said it is perhaps intuitively obvious that the notion of composition is in a way
naturally connected with the notion of factorization. This fact manifests also in the following difference:
while for computation of m1 . m2(C) it is enough to know only m1 and m2 just for the respective
projections of set C, computing m1 ⊕m2(C) requires knowledge of, roughly speaking, the entire basic
assignments m1 and m2.

For further intuitive justification of the operator of composition the reader is referred to [6, 7], where
a number of its properties were proved. Let us present just a couple of the most important ones.

Proposition 6. Basic Properties. Let m1 and m2 be basic assignments defined on X×Z and Y×Z,
respectively. Then:

1. m1 . m2 is a basic assignment on X× Y× Z;
2. (m1 . m2)↓XZ = m1;

3. m1 . m2 = m2 . m1 ⇐⇒ m↓Z1 = m↓Z2 .

The reader probably noticed that property 2 guarantees idempotency of the operator and gives a hint
about how to get a counterexample to its commutativity. From point 1, one immediately gets an idea
in what way it enables us to construct multidimensional basic assignments by an iterative application of
the operator of composition.

As it will be shown in the following assertions, in spite of all these differences, in special (rather
degenerated) situations the two discussed combination rules coincide.

Proposition 7. Let m1 be a basic assignment on X and m2 be an assignment on Y. Then

m1 ⊕m2 = m1 . m2.

Proof. The proof is almost obvious. For A = A↓X ./ A↓Y the Dempster’s rule of combination yields

m1 ⊕m2(A) =
1

K

∑
B⊆X,C⊆Y:A=B×C

m1(B) ·m2(C) = m1(A↓X) ·m2(A↓Y ),

(notice that in this case K = 1) and the same expression we get directly from the definition of the
operator of composition

m1 . m2(A) =
m1(A↓X) ·m2(A↓Y )

m2(∅)
= m1(A↓X) ·m2(A↓Y ).

For A 6= A↓X ./ A↓Y , both m1⊕m2(A) and m1 .m2(A) equal 0: for the Dempster’s rule of combination
it follows from Proposition 4, for the operator of composition it follows directly from the definition. �



It is well-known that Dempster-Shafer theory of evidence is an extension of both probability and pos-
sibility theories [8]. Possibilistic measures are represented by basic assignments whose all focal elements
are nested (they can be ordered so that the preceding one is a subset of the subsequent focal element).
Probability measures are represented by basic assignments whose all focal elements are singletons (one-
point-sets). These basic assignments are usually called Bayesian. One can easily see that for Bayesian
basic assignments m(A) = Q(A) for all sets A, and that all marginals of a Bayesian basic assignment are
also Bayesian.

Proposition 8. Consider two Bayesian basic assignments m1 and m2 defined on X × Z and Y × Z,
respectively. If m↓Z2 (z) = 0 =⇒ m↓Z1 (z) = 0 then

m1 ⊕m2 	m↓Z2 = m1 . m2.

Proof. Consider a point a ∈ X×Y×Z. Since we assume that m1 is Bayesian then m1(a↓XZ) = Q1(a↓XZ),

and, analogously, m2(a↓Y Z) = Q2(a↓Y Z) and m↓Z2 (a↓Z) = Q↓Z2 (a↓Z). Therefore

m1 ⊕m2 	m↓Z2 (a) = Q1 ⊕Q2 	Q↓Z2 (a) = Q1(a↓XZ) ·Q2(a↓Y Z)/Q↓Z2 (a↓Z)

=
m1(a↓XZ) ·m2(a↓Y Z)

m↓Z2 (a↓Z)
= m1 . m2(a).

�

Proposition 9. Consider a Bayesian basic assignment m defined on X×Y×Z. If its marginal m↓Z is
uniform in the sense that for any two focal elements z1, z2 ∈ Z of m↓Z it holds that m↓Z(z1) = m↓Z(z2),
then

m↓XZ ⊕m↓Y Z = m↓XZ . m↓Y Z .

Proof. Since the proposition concerns only Bayesian basic assignments we need not care about other sets
from X× Y× Z than singletons, because for all “non-singletons” A

m↓XZ ⊕m↓Y Z(A) = m↓XZ . m↓Y Z(A) = 0.

So, consider a ∈ X× Y× Z. The Dempster’s rule of combination yields

m↓XZ ⊕m↓Y Z(a) =
1

K

∑
B⊆X×Z,C⊆Y×Z:{a}=B./C

m↓XZ(B) ·m↓Y Z(C) =
1

K
m↓XZ(a↓XZ) ·m↓Y Z(a↓Y Z),

because among the singletons (i.e. focal elements of m) there cannot be other points whose join would
yield point a. Now, we will use the fact that both m↓XZ ⊕ m↓Y Z and m↓XZ . m↓Y Z are normalized
Bayesian basic assignments.

1 =
∑

a∈X×Y×Z
m↓XZ ⊕m↓Y Z(a) =

1

K

∑
a∈X×Y×Z

m↓XZ(a↓XZ) ·m↓Y Z(a↓Y Z)

=
1

K

∑
a∈X×Y×Z

(
m↓XZ . m↓Y Z(a)

)
·m↓Z(a↓Z) =

M

K

∑
a∈X×Y×Z

m↓XZ . m↓Y Z(a) =
M

K
,

where M = m↓Z(z) for all focal elements z ∈ Z of m↓Z . Thus we got M = K, and therefore for all
a ∈ X× Y× Z

m↓XZ ⊕m↓Y Z(a) =
m↓XZ(a↓XZ) ·m↓Y Z(a↓Y Z)

M
= m↓XZ . m↓Y Z(a),

which finishes the proof. �

Remark 3. The reader probably noticed that the statements of Propositions 8 and 9 are not surprising
because for Bayesian basic assignment, which represent probability measures, both types of factorization
coincide.



4.3 Example 2

Let X,Y, Z be binary variables with values in X = {ξ, ξ̄}, Y = {η, η̄} and Z = {ζ, ζ̄}, and a basic
assignment m with just two focal elements:

m({(ξ, η, ζ)}) = 1
2 , m({(ξ, η, ζ), (ξ, η, ζ̄)}) = 1

2 .

Let us compute m↓XZ ⊕m↓Y Z and m↓XZ . m↓Y Z .
For this we need the respective marginal basic assignments. Both of them have again two focal

elements:

m↓XZ({(ξ, ζ)}) = 1
2 , m↓XZ({(ξ, ζ), (ξ, ζ̄)}) = 1

2

m↓Y Z({(η, ζ)}) = 1
2 , m↓Y Z({(η, ζ), (η, ζ̄)}) = 1

2

To compute m↓XZ ⊕m↓Y Z , it is advantageous to find all sets A ⊆ X × Y × Z such that A = B ./ C,
where B and C are focal elements of m↓XZ and m↓Y Z , respectively:

{(ξ, ζ)} ./ {(η, ζ)} = {(ξ, η, ζ)},
{(ξ, ζ)} ./ {(η, ζ), (η, ζ̄)} = {(ξ, η, ζ)},
{(ξ, ζ), (ξ, ζ̄)} ./ {(η, ζ)} = {(ξ, η, ζ)},
{(ξ, ζ), (ξ, ζ̄)} ./ {(η, ζ), (η, ζ̄)} = {(ξ, η, ζ), (ξ, η, ζ̄)}}.

Employing this knowledge we get

m↓XZ ⊕m↓Y Z({(ξ, η, ζ)}) = m↓XZ({(ξ, ζ)}) ·m↓Y Z({(η, ζ)}) +m↓XZ({(ξ, ζ)}) ·m↓Y Z({(η, ζ), (η, ζ̄)})
+m↓XZ({(ξ, ζ), (ξ, ζ̄)}) ·m↓Y Z({(η, ζ)}) = 1

2 ·
1
2 + 1

2 ·
1
2 + 1

2 ·
1
2 = 3

4 ,

and

m↓XZ ⊕m↓Y Z({(ξ, η, ζ), (ξ, η, ζ̄)}) = m↓XZ({(ξ, ζ), (ξ, ζ̄)}) ·m↓Y Z({(η, ζ), (η, ζ̄)}) = 1
2 ·

1
2 = 1

4 .

As we said at the beginning of Section 4.2, computation of m↓XZ .m↓Y Z is simpler. It is enough just
to apply point [a] of Definition 3 (for m↓Z see Table 2):

m↓XZ . m↓Y Z({(ξ, η, ζ)}) =
m↓XZ({(ξ, ζ)}) ·m↓Y Z({(η, ζ)})

m↓Z({(ζ)})
=

1
2 ·

1
2

1
2

=
1

2
,

m↓XZ . m↓Y Z({(ξ, η, ζ), (ξ, η, ζ̄)}) =
m↓XZ({(ξ, ζ), (ξ, ζ̄)}) ·m↓Y Z({(η, ζ), (η, ζ̄)})

m↓Z({(ζ, ζ̄)})
=

1
2 ·

1
2

1
2

=
1

2
.

It is obvious that for all the other sets m↓XZ.m↓Y Z equal 0. In this way we got that though m↓XZ⊕m↓Y Z

and m↓XZ . m↓Y Z have the same focal elements

m↓XZ ⊕m↓Y Z({(ξ, η, ζ)}) = 3
4 , m↓XZ . m↓Y Z({(ξ, η, ζ)}) = 1

2 ,

m↓XZ ⊕m↓Y Z({(ξ, η, ζ), (ξ, η, ζ̄)}) = 1
4 , m↓XZ . m↓Y Z({(ξ, η, ζ), (ξ, η, ζ̄)}) = 1

2 ,

they differ from each other in the values assigned to them. Thus we see that basic assignment m factorizes
in the sense that m = m↓XZ . m↓Y Z .

Table 2. Marginal basic assignment m↓Z and its commonality function

A m↓Z Q↓Z

ζ 1
2

1

ζ̄ 0 1
2

ζ, ζ̄ 1
2

1
2

Let us finish this example by computing m↓XZ ⊕ m↓Y Z 	 m↓Z . To do it, we have to find a basic
assignment corresponding to commonality function Q↓XZ ⊕ Q↓Y Z 	 Q↓Z . The necessary computations
are visible from Table 3. Realize that the given set functions are generally defined for 255 sets, however,
for all of them, but for the three presented in Table 3, all values of the presented basic assignments and
commonality functions equal 0.



Table 3. Combined basic assignments and their commonality functions

A m↓XZ ⊕m↓Y Z Q↓XZ ⊕Q↓Y Z Q↓XZ ⊕Q↓Y Z 	Q↓Z m↓XZ ⊕m↓Y Z 	m↓Z

(ξ, η, ζ) 3
4

1 1/1 = 1 1
2

(ξ, η, ζ̄) 0 1
4

1
4
/ 1
2

= 1
2

0

(ξ, η, ζ), (ξ, η, ζ̄) 1
4

1
4

1
4
/ 1
2

= 1
2

1
2

5 Summary and Conclusions

The goal of the paper was to discuss relationship between two ways of factorization within Dempster-
Shafer theory of evidence. Necessity of factorization of multidimensional basic assignments (or an equiv-
alent representation) follows from a high algorithmic complexity of all the computational procedures
connected with an inference within the Dempster-Shafer theory framework. With respect to this, let us
say that in this paper we spoke only about factorization of basic assignments and commonality functions.
Though it is used in the title, we did not studied a factorization of the respective belief of plausibility
functions.

The types of factorization we spoke about are closely connected with the two types of operators defined
for basic assignment combination: the Dempster’s rule of combination and the operator of composition.
These two operators were designed for different purposes and both of them meet the basic requirement
expected from factorization, namely they enable constructing multidimensional models from a system of
low-dimensional ones.

The paper contains just a preliminary ideas and gives answers only to very simple questions. So there
are many more that remain to be answered. For example:

• Is it possible to characterize situations when m1 ⊕m2 	m↓Z2 = m1 . m2?

• Is it possible to compute locally m(X,Z|Y ) for m = m↓XZ . m↓Y Z?

• When
(
m1 ⊕m2 	m↓Z2

)↓XZ

= m1?
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