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Abstract. In probability theory, the mutual information between two
discrete random variables, X and Y , measures the average reduction in
uncertainty about Y when we learn the value of X. It is defined using the
Shannon entropy of probability distributions. This paper defines a cor-
responding concept of mutual information between two variables in the
Dempster-Shafer (D-S) belief function theory using the decomposable
entropy defined by Jirousek and Shenoy. We also define the Kullback-
Liebler (KL) divergence for the D-S theory as similar to the KL diver-
gence for probability theory.
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1 Introduction

The main goal of this paper is to define mutual information (MI) between two
variables in the D-S belief function theory [2,13]. Our definition is based on the
decomposable entropy for belief functions defined in [5], which satisfies the com-
pound distributions property analogous to the one that characterizes Shannon’s
definitions of entropy and conditional entropy for probability mass functions [15].
We also define a generalization of the KL divergence between two belief functions
defined for the same set of variables and express mutual information in terms of
KL divergence, similar to probability theory.

The definition of MI between two variables in a belief-function graphical
model is analogous to the definition between two variables in a probabilistic
graphical model. It satisfies many of the properties of MI in the probabilistic
case. An exception is that we are unable to prove that MI in the belief-function
case is always non-negative. We also define a generalization of the KL divergence
for the case of DS belief functions analogous to the probabilistic case. Unlike
the probabilistic case, the KL divergence between two belief functions is not
always non-negative. This is not a fatal flaw. We conjecture that if QX,Y is
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a commonality function for {X,Y } with marginals QX for X, and QY for Y ,
then the KL divergence between QX,Y and QX ⊕ QY (⊕ denotes Dempster’s
combination rule) is always non-negative. If this conjecture is true, then it would
follow that MI between two variables (in a belief function graphical model) is
always non-negative.

The concepts of MI and KL divergence in probability theory are widely used
to construct probabilistic graphical models [8]. We believe the MI and KL diver-
gence concepts defined in this paper will be equally useful for constructing belief
function graphical models [1].

An outline of the remainder of the paper is as follows. In Sect. 2, we briefly
review the definition of Shannon’s entropy of a probability mass function, con-
ditional entropy, and their properties. We also review the definition and prop-
erties of mutual information and KL divergence in probability theory. Most of
this material is taken from [3,10,15]. In Sect. 3, we review the representations,
operators, and conditional belief functions in the D-S theory of belief functions.
In Sect. 4, we review the definitions of decomposable entropy and conditional
decomposable entropy for the D-S theory and state some of their properties [5,7].
In Sect. 5, we define mutual information of a variable given another for a joint
belief function for the two variables. Also, we define the KL divergence between
two belief functions for the same set of variables. As in the probabilistic case,
we express mutual information in terms of the KL divergence of two joint belief
functions. Finally, in Sect. 6, we summarize, discuss future research, and con-
clude.

2 Shannon’s Entropy, MI, and KL Divergence

This section briefly reviews Shannon’s definitions of entropy of probability mass
functions (PMFs) and conditional entropy of conditional probability tables
(CPTs) and their properties. We also review the definitions of mutual infor-
mation between two variables and the KL divergence between two probability
mass functions defined for the same set of variables. Most of the material in
this section is taken from [3,10,15]. We use some notation (such as probabilistic
combination, ⊗) from [16].

Definition 1 (Shannon’s entropy [15]). Suppose PX is a PMF of a discrete
variable X with state space ΩX . Shannon’s entropy of PX , denoted by Hs(PX),
is defined as:

Hs(PX) = −
∑

x∈ΩX :PX(x)>0

PX(x) log2(PX(x)). (1)

Definition 2 (Shannon’s conditional entropy [15]). Suppose PY |X is a
CPT for Y given X for all x ∈ ΩX such that PX(x) > 0. Shannon’s condi-
tional entropy of PY |X , denoted by Hs(PY |X), is defined as:

Hs(PY |X) =
∑

x∈ΩX :PX(x)>0

PX(x)Hs(PY |x). (2)



Mutual Information and K-L Divergence in the D-S Theory 227

Thus, Shannon’s conditional entropy of PY |X is the average of Shannon’s entropy
Hs(PY |x) for each value x ∈ ΩX weighted by PX(x).

Some important properties of Shannon’s entropy are as follows [10]:

1. Hs(PX) ≥ 0. Hs(PX) = 0 if and only if there is an x ∈ ΩX such that
PX(x) = 1.

2. Shannon’s entropy is decomposable, i.e., if PX,Y = PX ⊗ PY |X , then
Hs(PX,Y ) = Hs(PX) +Hs(PY |X).

3. It is shown in [15] that Hs(PX,Y ) ≤ Hs(PX)+Hs(PY ), where PX and PY are
marginal PMFs of X and Y computed from joint PMF PX,Y , with equality
only if X and Y are independent with respect to PX,Y .

4. Hs(PY |X) ≤ Hs(PY ). Thus, the entropy of PY is never increased by knowledge
of X. It will be decreased unless X and Y are independent, in which case it
stays the same.

The concept of mutual information between two random variables is intro-
duced in [15].

Definition 3 (Mutual information). Consider a joint PMF PX,Y (x, y) =
PX(x)PY |X(x, y) defined in terms of marginal PMF PX and CPT PY |X . Let
PY = (PX,Y )↓Y denote the marginal of PX,Y for Y . The mutual information of
Y with respect to X, denoted by I(Y ;X), is defined as:

I(Y ;X) = Hs(PY ) − Hs(PY |X) (3)

Mutual information I(Y ;X) can be interpreted as a measure of Y ’s dependence
on X, where the measure is the reduction of Shannon’s entropy of Y after obser-
vation of X. Some properties of I(Y ;X) are as follows [3,10].

1. I(Y ;X) ≥ 0. I(Y ;X) = 0 if and only if Y is independent of X with respect
to the joint PMF PX,Y .

2. I(X;Y ) = I(Y ;X).
3. I(Y ;X) ≤ Hs(PY ) and I(X;Y ) ≤ Hs(PX).
4. I(Y ;X) = Hs(PX) +Hs(PY ) − Hs(PX,Y ).

Definition 4 (KL divergence [9]). Suppose P and Q are two PMFs for X
defined on the state space ΩX such that if Q(x) = 0 for some x ∈ Ω, then
P (x) = 0. The KL divergence between P and Q, denoted by DKL(P ||Q), is
defined as:

DKL(P ||Q) =
∑

x∈ΩX

P (x) log
(
P (x)
Q(x)

)
(4)

If the condition that Q(x) = 0 implies P (x) = 0 is not satisfied, then DKL(P ||Q)
is considered as +∞.

KL divergence satisfies Gibb’s inequality, i..e., DKL(P ||Q) ≥ 0, with equality
if and only if P = Q [10].
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Mutual information I(Y ;X) with respect to joint PMF PX,Y can be
expressed in terms of KL divergence as follows. Suppose PX,Y is a joint PMF
for {X,Y } with marginals PX and PY for X and Y , respectively. Then,

I(Y ;X) = DKL(PX,Y ||PX ⊗ PY ) (5)

Thus, it follows from the properties of KL divergence that I(Y ;X) ≥ 0, and
I(Y ;X) = 0 if and only if PX,Y = PX ⊗PY , i.e., X and Y are independent with
respect to PX,Y . Also, as DKL(PX,Y ||PX ⊗ PY ) is symmetric in X and Y , i.e.,
PX,Y = PY,X and PX ⊗ PY = PY ⊗ PX , it follows that I(X;Y ) = I(Y ;X).

3 Basic Definitions in the D-S Theory

Notation. Let V denote a finite set of variables. Elements of V are denoted by
upper-case Roman letters, X, Y , Z, etc. Subsets of V are denoted by lower-
case Roman alphabets r, s, t, etc. Each variable X is associated with a finite
state space ΩX that contains all possible values of X. For subset r ⊆ V, let
Ωr = ×X∈rΩX denote the state space of r. Let 2Ωr denote the set of all subsets
of Ωr.

Basic Probability Assignment. A basic probability assignment (BPA) m for r is
a function m : 2Ωr → [0, 1] such that:

m(∅) = 0, and
∑

a⊆Ωr

m(a) = 1. (6)

m represents some knowledge about variables in r, and we say the domain of m
is r. Subsets a such that m(a) > 0 are called focal elements of m. If m has only
one focal element (with probability 1), we say m is deterministic. If the focal
element of a deterministic BPA is Ωr, we say m is vacuous. A vacuous BPA for
r is denoted by ιr. If all focal elements of m are singleton subsets, we say m is
Bayesian. We say m is consonant if the focal elements of m are nested. We say
m is quasi-consonant if the intersection of all focal elements of m is non-empty.
A BPA that is consonant is also quasi-consonant, but not vice-versa.

Commonality Function. The information in a BPA m for r can also be repre-
sented by a corresponding commonality function (CF) Qm for r that is defined
as follows:

Qm(a) =
∑

b∈2Ωr : b⊇a

m(b) for all a ∈ 2Ωr . (7)

For the vacuous BPA ιr for r, the corresponding CF Qιr is given by Qιr (a) =
1 for all a ∈ 2Ωr . If m is a Bayesian BPA for r, then the corresponding CF Qm

is such that Qm(a) = m(a) if |a| = 1, and Qm(a) = 0 if |a| > 1.

Operations in the D-S Theory. The D-S theory has two main operations: Demp-
ster’s combination rule and marginalization.
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Notation. Projection of states simply means dropping extra coordinates; for
example, if (x, y) is a state of (X,Y ), then the projection of (x, y) to X, denoted
by (x, y)↓X , is simply x, which is a state of X.

The projection of subsets of states is achieved by projecting every state in the
subset. Suppose b ∈ 2ΩX,Y . Then b↓X = {x ∈ ΩX : (x, y) ∈ b for some y ∈ ΩY }.
Notice that b↓X ∈ 2ΩX .

Dempster’s Combination Rule. In the D-S theory, we combine two BPAs m1 and
m2 representing distinct pieces of evidence by Dempster’s rule [2] and obtain the
BPA m1 ⊕ m2, which represents the combined evidence. Dempster referred to
this rule as the product-intersection rule, as the product of the BPA values is
assigned to the intersection of the focal elements, followed by normalization.
Normalization consists of discarding the value assigned to ∅ and normalizing the
remaining values so that they add to 1.

In terms of CFs, Dempster’s rule is pointwise multiplication of CFs followed
by normalization, which is similar to the probabilistic combination rule of point-
wise multiplication of probability potentials followed by normalization. This sim-
ilarity with probability theory is one of the motivations behind our definitions
of entropy and conditional entropy.

Marginalization. Suppose m is a BPA for {X,Y }. Then, the marginal of m for
X, denoted by m↓X , is a BPA for X such that for each a ∈ 2ΩX ,

m↓X(a) =
∑

b∈2ΩX,Y : b↓X= a

m(b). (8)

Conditional Belief Functions. Consider a BPA mX for X and x ∈ ΩX such that
mX({x}) > 0. Suppose that there is a BPA for Y expressing our belief about Y
if we know that X = x, and denote it by mYx . Notice that mYx is a BPA for
Y . We can embed this BPA for Y into a conditional BPA for {X,Y }, which is
denoted by mY |x, such that the following two conditions hold:

1. mY |x tells us nothing about X, i.e., m↓X
Y |x(ΩX) = 1.

2. If we combine mY |x with the deterministic BPA mX=x for X such that
mX=x({x}) = 1 using Dempster’s rule, and marginalize the result to Y we
obtain mYx , i.e., (mY |x ⊕ mX=x)↓Y = mYx .

Henceforth, we refer to BPA mY |x as a BPA for Y given x ∈ ΩX . Conditional
BPAs are studied further in [4].

Smets suggests one way to obtain such an embedding [19] (see also [14]),
called conditional embedding. It consists of taking each focal element b ∈ 2ΩY of
mYx , and converting it to the corresponding focal element

({x} × b) ∪ ((ΩX \ {x}) × ΩY ) ∈ 2ΩX,Y (9)

of mY |x with the same mass. It is easy to confirm that this embedding method
satisfies the two conditions described in the previous paragraph.

This completes our brief review of the D-S belief function theory. For further
details, the reader is referred to [13].
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4 The Decomposable Entropy for the D-S Theory

The D-S theory has numerous definitions of entropy (see a review in [6]). In
this section, we focus on decomposable entropy (d-entropy) of belief functions in
the D-S theory [5] and describe its properties [7]. The definition of d-entropy is
designed to satisfy a compound distribution property analogous to the compound
distribution property that characterizes Shannon’s entropy of PMFs.

Definition 5 (d-entropy of a CF). Suppose QX is a CF for X with state
space ΩX . Then, the d-entropy of QX , denoted by Hd(QX), is defined as

Hd(QX) =
∑

a∈2ΩX

(−1)|a|QX(a) log(QX(a)). (10)

Definition 6 (Conditional d-entropy). Suppose QX is a CF for X, and sup-
pose QY |X is a conditional CF for Y given X. Then, the conditional d-entropy
of QY |X , denoted by Hd(QY |X), is defined as follows:

Hd(QY |X) =
∑

a∈2ΩX,Y :QX(a↓X)>0

(−1)|a| QX(a↓X)QY |X(a) log(QY |X(a)). (11)

Using the definition of expectation for belief functions in [17], the conditional
d-entropy in Eq. (11) can be considered as an expectation of Hd(QY |x) as in the
probabilistic case.

Some important properties of our definitions in Eqs. (10) and (11) are as
follows: (proofs of all properties can be found in [7]).

1. (Compound distributions) Suppose QX is a CF for X, and suppose QY |X is a
conditional CF for Y given X. Let QX,Y = QX ⊕ QY |X . Then, Hd(QX,Y ) =
Hd(QX) +Hd(QY |X).

2. (Non-negativity) Suppose m is a BPA for X and suppose |ΩX | = 2. Then,
Hd(m) ≥ 0. For |ΩX | > 2,Hd(m) does not satisfy the non-negativity property
as shown in an example in [7]. Lack of non-negativity is not a drawback.
Shannon’s definition of entropy for continuous random variables characterized
by probability density functions can be negative [15].

5 MI and KL Divergence for Belief Functions

We will define mutual information for two variables whose behavior is defined
by a joint BPA mX,Y for {X,Y }. The exposition will mirror the definition of
mutual information in probability theory in Sect. 2.

Definition 7 (MI for the D-S theory). Consider a joint BPA mX,Y =
mX ⊕ mY |X for {X,Y } defined in terms of a marginal BPA mX for X and a
conditional BPA mY |X for Y given X. Let mY denote the marginal BPA m↓Y

X,Y
for Y . The mutual information of Y with respect to X, denoted by Id(Y ;X), is
defined as follows:

Id(Y ;X) = Hd(mY ) − Hd(mY |X) (12)
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Some comments/properties of Definition 7:

1. The definition of MI Id(Y ;X) is similar to the probabilistic MI. The subscript
d in Id(X;Y ) is to differentiate MI for the D-S theory from the corresponding
probabilistic definition.

2. Unlike Shannon’s entropy, d-entropy is not non-negative. But, MI Id(Y ;X)
is the difference of two d-entropies of Y . We conjecture that Id(Y ;X) ≥ 0.

3. If our conjecture in Property 2 is true, Hd(mY |X) ≤ Hd(mY ). Thus, the d-
entropy of mY is never increased by knowledge of X. It will be decreased
unless X and Y are independent, in which case it stays the same.

4. If our conjecture in Property 2 is true, then Hd(mX,Y ) ≤ Hd(mX)+Hd(mY )
with equality iff X and Y are independent with respect to mX,Y .

5. For probabilistic mutual information I(X;Y ) = I(Y ;X). For the D-S case,
if we have mX,Y = mX ⊕ mY |X , it is not always the case that there exists
a conditional mX|Y for X given Y such that mX,Y = (mX,Y )↓Y ⊕ mX|Y . If
there does exist a conditionalmX|Y forX given Y , then Id(X;Y ) = Id(Y ;X).
See proof in [18].

Example 1. Consider two binary variablesX and Y with states ΩX = {x, x̄} and
ΩY = {y, ȳ}. Suppose BPA mX for X is as follows: mX({x}) = 0.3,mX({x̄}) =
0.3,mX({x, x̄}) = 0.4. Suppose Y is a deterministic function ofX:mYx({y}) = 1,
and mYx̄({ȳ}) = 1. After conditional embedding and Dempster combination,
conditional mY |X for Y given X is as follows: mY |X({(x, y), (x̄, ȳ)}) = 1.

Finally, the joint BPA mX,Y = mX ⊕ mY |X is as follows: mX,Y ({(x, y)}) =
0.3,mX,Y ({(x̄, ȳ)}) = 0.3,mX,Y ({(x, y), (x̄, ȳ)}) = 0.4. It follows from the defini-
tions of d-entropy and conditional d-entropy that Hd(mX) ≈ 0.19, Hd(mY |X) =
0 (as it is deterministic), Hd(mX,Y ) ≈ 0.19. Notice that the marginal of
the joint for Y , mY = (mX,Y )↓Y is as follows: mY ({y}) = 0.3,mY ({ȳ}) =
0.3,mY ({y, ȳ}) = 0.4. Thus, Hd(mY ) ≈ 0.19. This example illustrates the fol-
lowing results:

1. Hd(mX)+Hd(mY |X) ≈ 0.19+0 = 0.19 = Hd(mX,Y ) (chain rule of entropy).
2. I(Y ;X) = Hd(mY ) − Hd(mY |X) ≈ 0.19 − 0 = 0.19 ≥ 0 (Property 2 of

Definition 7).
3. For this example, the joint mX,Y can also be factored into mY ⊕mX|Y , where

mX|Y = mY |X . Thus, I(X;Y ) = Hd(mX) − Hd(mX|Y ) ≈ 0.19 − 0 = 0.19 =
I(X;Y ) (Property 5 of Definition 7).

4. Hd(mX,Y ) ≈ 0.19 ≤ Hd(mX) +Hd(mY ) ≈ 0.19 + 0.19 = 0.38 (Property 4 of
Definition 7).

KL Divergence for the D-S Theory. Next, we will define KL divergence for the
D-S theory and express mutual information in terms of KL divergence, similar
to probability theory.

Definition 8. Suppose Q1 and Q2 are CFs for X with state space ΩX such that
if Q2(a) = 0, then Q1(a) = 0. The KL divergence between Q1 and Q2, denoted
by DKL(Q1||Q2), is defined as:
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DKL(Q1||Q2) =
∑

a∈2ΩX

(−1)|a|+1Q1(a) log
(
Q1(a)
Q2(a)

)
(13)

If the condition Q2(a) = 0 implies Q1(a) = 0 is not satisfied, then DKL(Q1||Q2)
is considered to be +∞.

Some comments about KL divergence:

1. Using the definition of expectation for belief functions in [17], Definition 8
can be interpreted as an expectation of log(Q1/Q2) with respect to CF Q1,
analogous to the definition of KL divergence for probability theory.

2. If Q1 and Q2 are both Bayesian CFs, i.e., Qi(a) = 0 if |a| > 1, then
DKL(Q1||Q2) reduces to the probabilistic definition.

3. The KL divergenceDKL(Q1||Q2) does not satisfy the non-negativity property
of probabilistic KL divergence. See a counter-example in [18].

4. If QX,Y = QX ⊕ QY |X is a joint CF for {X,Y }, then I(Y ;X) can be
expressed as in the probabilistic case, i.e., I(Y ;X) = Hd(QY )−Hd(QY |X) =
DKL(QX,Y ||QX ⊕ QY ). See proof in [18].

6 Summary and Conclusion

We have generalized the concepts of mutual information [15] and KL diver-
gence [9] in probability theory to the D-S theory using d-entropy defined in [5].
What makes this possible is the decomposability property of d-entropy.

We need to resolve the issue of non-negativity of MI Id(Y ;X). As far as we
know, there is no prior literature on mutual information for the D-S theory. There
are several definitions of KL divergence for the D-S theory, e.g., [11,12,20,21].
A comparison of these definitions with the definition in this paper is yet to be
done. This paper is a condensed version of [18].

Acknowledgments. The author is grateful to Radim Jiroušek and Václav Kratochv́ıl
for their comments and encouragement. Thanks to Radim for pointing out that the
definition of KL divergence for the D-S theory in this paper is not always non-negative.
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6. Jiroušek, R., Shenoy, P.P.: A new definition of entropy of belief functions in the
Dempster-Shafer theory. Int. J. Approx. Reason. 92(1), 49–65 (2018)
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