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Abstract. The primary goal is to define conditional belief functions in the Dempster-Shafer
theory. We do so similar to the notion of conditional probability tables in probability theory.
Conditional belief functions are necessary for constructing directed graphical belief function
models in the same sense as conditional probability tables for constructing Bayesian networks.
Besides defining conditional belief functions, we state and prove a few basic properties of
conditionals. We provide several examples of conditional belief functions, including those
obtained by Smets’ conditional embedding.
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1 Introduction

The main goal of this article is to review the concept of conditional belief functions in the Dempster-
Shafer (D-S) theory of belief functions [4], [13], provide a formal definition, state some basic prop-
erties, and provide some examples.

Several theories of belief functions use the representation of belief functions but differ in the
combination rules and corresponding semantics. The D-S theory uses Dempster’s combination rule.
[5] proposes an alternative combination rule interpreting belief functions as credal sets [7]. These
two theories of belief functions are different. A Comparison of these two theories is outside the
scope of this paper. Here, we are concerned exclusively with the D-S theory.

One of the earliest to define conditional belief functions for the D-S theory is Smets [18]. Other
contributions on conditional belief functions are (in chronological order) Shafer [14], [15], Cano et
al. [3], Shenoy [16], Almond [1], and Xu and Smets [19].

Shafer [14] is concerned about parametric models. There is a discrete parameter variable Θ
and a data variable X. We have a prior basic probability assignment (BPA) mΘ for Θ. We have a
conditional model for the data, BPA mX|θ for X given θ ∈ ΩΘ. Based on a dataset of n independent
observations of X, the task is to compute the posterior belief function for Θ. The BPAs mX|θ for
X given θ ∈ Θ are converted to a conditional BPA mθ,X for (Θ,X) using Smets’ conditional
embedding. The marginal of mθ,X for Θ is vacuous. For all θ ∈ ΩΘ, the conditionals BPA mθ,X

are then combined using Dempster’s rule resulting in the conditional mX|Θ. This assumes that
the BPAs mθ,X are distinct, which may be reasonable if the number of elements of ΩΘ is small.

https://pshenoy.ku.edu
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Shafer also looks at the case where BPAs mθ,X are not independent, and some known distributions
describe the dependency.

Shafer [15] discusses conditionals abstractly as potentials that extend the domain of a potential.
He calls conditionals ‘continuers.’ Thus, ψ is a continuer of σ from a to a∪b if and only if σ↓a⊕ψ =
σ↓a∪b. Here, σ↓a denotes the marginal of σ for a, ⊕ denotes Dempster’s combination operator, and
a and b are disjoint subsets of variables. The paper’s focus is on the computation of marginals, but
there are some interesting properties of continuers stated.

Cano et al. [3] define conditionals abstractly in the framework of valuation-based systems, but
they do require that the marginal m(b|a)↓a of conditional m(b|a) is a vacuous valuation for a. The
focus is on finding marginals by propagating conditional valuations in a directed acyclic graph.

Shenoy [16] describes conditional valuations using the removal operator, which is an inverse of the
combination operator. For the D-S theory, the removal operator corresponds to pointwise division
of commonality functions followed by normalization. If σ is a BPA for subset s of variables, and a
and b are disjoint subsets of s, then conditional belief function σ(b|a) is defined as σ↓a∪b ⊖ σ↓a. A
consequence of this definition is that the marginal of σ(b|a) for a is vacuous for a. One disadvantage
of this definition is that conditionals are defined starting from the joint. This is not helpful in
constructing joint belief functions. We say σ↓a is included in σ↓a∪b if σ↓a∪b = σ↓a⊕σ(b|a). Another
disadvantage is that if σ↓a is not included in σ↓a∪b, σ(b|a) may result in a BPA with negative
masses. Such BPAs are called quasi-BPAs4.

Almond [1] defines conditional belief functions as those obtained from a joint BPA by Dempster’s
conditioning and marginalization. Suppose mX,Y is a BPA for (X,Y ). He defines the corresponding
conditional BPA mY |x, where x ∈ ΩX as follows. Suppose mX=x is a deterministic BPA for X such

that mX=x({x}) = 1. Then mY |x is defined as (mX,Y ⊕mX=x)
↓X . He then discusses the problem of

going from conditionals to joint and argues that there isn’t a unique joint associated with a group
of conditionals, e.g., {mY |x}x∈ΩX

. Smets’ conditional embedding is discussed whereby a conditional
BPA mY |x for Y is embedded into a BPA mx,Y for (X,Y ) (details of Smets’ conditional embedding
are discussed in Section 3). Next, BPA mY |X for (X,Y ) is constructed from conditional embeddings
mx,Y for x ∈ ΩX as follows:

mY |X = ⊕{mx,Y : x ∈ ΩX}. (1)

Eq. (1) implicitly assumes that the conditionally embedded BPAs mx,Y are distinct. Almond claims
this assumption is unrealistic except for the case where we start from conditional BPAs mY |x that
are Bayesian.

Xu and Smets [19] discuss conditionals mY |a for Y when proposition a is observed, where ∅ ̸=
a ∈ 2ΩX . Let ma,Y denote the BPA for (X,Y ) after conditional embedding of mY |a. [1] and [19]
discuss Dempster’s combination of all such conditionals:

⊕ {ma,Y : ∅ ̸= a ∈ 2ΩX}. (2)

While it may be reasonable to assume that mx,Y for x ∈ ΩX are distinct as in Eq. (1), assuming
that all BPAs ma,Y for ∅ ̸= a ∈ 2ΩX are distinct may be unreasonable. The focus of [19] is on
computing marginals.

We do not start with a joint BPA when constructing a directed graphical belief function model.
Instead, we construct a joint BPA using priors and conditionals. In this context, the current defini-
tions in the literature are not helpful. What exactly is a conditional BPA?What are their properties?
This is the primary goal of this article.

4 This phenomenon has been observed, e.g., in [11], [16], and [12]. An example is given in [10].
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An outline of the remainder of the paper is as follows. In Section 2, we review the basics of
D-S theory. In Section 3, we define conditional belief functions, and state some properties. Also,
we describe where conditionals come from, including Smets’ conditional embedding. We describe
Almond’s captain’s problem [1], a directed graphical belief function model with several examples
of conditionals. In Section 4, we conclude with a summary.

2 Basics of D-S theory of Belief Functions

This section sketches the basics of the D-S theory of belief functions [4], [13].
Knowledge is represented by basic probability assignments, belief functions, plausibility func-

tions, commonality functions, credal sets, etc. Here we focus only on basic probability assignments
and commonality functions.

Consider a set s of variables. For each X ∈ s, let ΩX denote its finite state space, and let Ωs

denote ×X∈sΩX . Let 2Ωs denote the set of all subsets of Ωs. A basic probability assignment (BPA)
m for s is a function m : 2Ωs → [0, 1] such that

m(∅) = 0, and
∑

∅̸=a∈2Ωs

m(a) = 1. (3)

m represents some knowledge about variables in s, and we say the domain of m is s. m(a) is the
probability assigned to the proposition represented by the subset a of Ωs. Subsets a such that
m(a) > 0 are called focal elements of m. If m has only one focal element (with probability 1), we
say m is deterministic. If the focal element of a deterministic BPA is Ωs, we say m is vacuous.

The knowledge encoded in a BPA m can be represented by a corresponding commonality func-
tion. The commonality function (CF) Qm corresponding to BPA m for s is such that for all a ∈ 2Ωs ,

Qm(a) =
∑
b⊇a

m(b). (4)

Qm(a) represents the probability mass that could move to every state in a. Qm has exactly the
same information as m. Given a CF Q for s, we can recover the corresponding BPA mQ for s as
follows [13]: For all a ∈ 2Ωs ,

mQ(a) =
∑

b∈2Ωs :b⊇a

(−1)|b\a|Q(b). (5)

Thus, Q : 2Ωs → [0, 1] is a CF for s if and only if

Q(∅) = 1 (6)∑
b∈2Ωs :b⊇a

(−1)|b\a|Q(b) ≥ 0 for all ∅ ̸= a ∈ 2Ωs , and (7)

∑
∅̸=a∈2Ωs

(−1)|a|+1Q(a) = 1. (8)

Eq. (6) follows from Eq. (4), Eq. (7) corresponds to non-negativity of BPA values, and Eq. (8)
corresponds to the second equation in Eq. (3).

There are two basic inference operators in the D-S theory, marginalization and combination.
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Suppose m is a BPA for a set of variables r with state space Ωr = ×X∈rΩX and suppose s ⊆ r.
The marginalization operator transforms a BPAm for r to a BPAm↓s for s by eliminating variables
in r \ s. Projection of states means dropping some coordinates. If (x, y) ∈ ΩX,Y , then (x, y)↓X = x.
Projection of subset of states is achieved by projecting every state in the subset. Suppose a ∈ 2ΩX,Y .
Then, a↓X = {x ∈ 2ΩX : (x, y) ∈ a}. Suppose m is a BPA for r. Then, the marginal of m for s ⊆ r,
denoted by m↓s, is a BPA for s such that for each a ∈ 2Ωs ,

m↓s(a) =
∑

b∈2Ωr :b↓s=a

m(b). (9)

Dempster’s combination rule is described using commonality functions. Consider two distinct
BPAs m1 for r and m2 for s, and let Q1 and Q2 denote the corresponding commonality functions.
Then, as showed in [13], for all ∅ ̸= a ∈ 2Ωr∪s

(Q1 ⊕Q2)(a) = K−1Q1(a
↓r)Q2(a

↓s), (10)

where K is a normalization constant defined as follows:

K =
∑

∅̸=a∈Ωr∪s

(−1)|a|+1Q1(a
↓r)Q2(a

↓s). (11)

(1−K) can be regarded as a measure of conflict between m1 and m2. If K = 1, there is no conflict,
and if K = 0, there is total conflict and Dempster’s combination Q1 ⊕Q2 is undefined.

It is easy to show that Dempster’s combination is commutative and associative: m1 ⊕ m2 =
m2 ⊕m1, and (m1 ⊕m2)⊕m3 = m1 ⊕ (m2 ⊕m3).

There is an important property satisfied by marginalization and Dempster’s combination rule
called the local computation property [17]. Suppose m1 is a BPA for r and m2 is a BPA for s
(subsets r and s may not be disjoint) and suppose X ∈ r and X /∈ s. Then,

(m1 ⊕m2)
↓(r∪s)\{X} = (m1)

↓r\{X} ⊕m2 (12)

This property is the basis of computing marginals of joint belief functions. [6] describes an imple-
mentation of a local computation algorithm for computing marginals of graphical belief function
models.

Next, we define the removal operator, which is motivated by the following situation in probability
theory. Suppose PX,Y is a joint probability mass function (PMF) for (X,Y ), and we need to
compute the conditional probability table (CPT) PY |X . We know that PX,Y = PX ⊗ PY |X , where

PX = (PX,Y )
↓X is the marginal PMF for X, and ⊗ is the probabilistic combination operator

pointwise multiplication followed by normalization. This suggests that PY |X = PX,Y ⊘ PX , where
⊘ is the inverse combination operator, pointwise division followed by normalization. If PX(x) = 0,
then PX,Y (x, y) must also be zero, and we can consider 0/0 as undefined (using the symbol 0/0 =
?) or define it as 1. Thus, if we regard combination ⊗ as aggregation of knowledge, then ⊘ can be
regarded as removal of knowledge, and computing a CPT PY |X is removing PX from PX,Y .

As we saw in Eq. (10), Dempster’s combination is pointwise multiplication of CFs followed by
normalization. Thus, removal in the D-S theory can be defined as pointwise division of CFs followed
by normalization. Formally, suppose QX,Y is a joint CF for (X,Y ), and let QX = (QX,Y )

↓X denote
the marginal CF for X. Then, we define removal of QX from QX,Y as follows: For all ∅ ̸= a ∈ 2ΩX,Y ,

(QX,Y ⊖QX)(a) = K−1QX,Y (a)/QX(a↓X), (13)
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where K is a normalization constant given by:

K =
∑

∅̸=a∈2ΩX,Y

(−1)|a|+1QX,Y (a)/QX(a↓X) (14)

As in the probabilistic case, if QX(a↓X) = 0, then QX,Y (a) must also be 0, and we can define 0/0
as 1.

Unlike probability theory, if we start with an arbitrary joint CF QX,Y , then QX,Y ⊖QX may fail
to be a CF because the corresponding BPA has negative masses adding to 1 5. In the next section,
we state a proposition that characterizes when removal results in a well-defined CF.

3 Conditional Belief Functions

This section defines a conditional belief function similar to a conditional probability table in prob-
ability theory without starting from a joint distribution. Our task is constructing a joint using
conditional belief functions as in a graphical model. We begin with the probabilistic case.

Suppose PX denotes a PMF ofX, and we wish to construct a joint PMF PX,Y of (X,Y ) such that
PX is the marginal of PX,Y forX (as is typically done in a probabilistic graphical model). One way to
do this is to define a PMF of Y for each x ∈ ΩX such that 6 PX(x) > 0. Let PY |x : ΩY → [0, 1] denote
a PMF of Y when X is known to be x, i.e., for all y ∈ ΩY , PY |x(y) ≥ 0 and

∑
y∈ΩY

PY |x(y) = 1.
We can embed all PMFs PY |x of Y for each x ∈ ΩX into a function PY |X : ΩX,Y → [0, 1] such
that PY |X(x, y) = PY |x(y). In the Bayesian network literature, the function PY |X is called a CPT.
The joint PMF PX,Y of (X,Y ) can now be defined as PX,Y (x, y) = PX(x) · PY |X(x, y). Some
observations:

1. Notice that if we marginalize the CPT PY |X to X, then we get a potential that is identically 1
for all values of x ∈ ΩX , which is the vacuous potential in probability theory.

2. If we consider probabilistic combination operator ⊗ as pointwise multiplication followed by
normalization, then we can write PX,Y = PX ⊗ PY |X . The normalization constant is 1 for this
combination.

3. It follows from the first observation that the marginal of PX,Y for X is PX . So, the CPT PY |X
is used to extend PX to PX,Y such that the marginal (PX,Y )

↓X = PX .

A formal definition of a conditional belief function for Y given X in the D-S theory follows.

Definition 1. Suppose mY |X is a BPA for (X,Y ), where X and Y are distinct variables. We say
mY |X is a conditional BPA for Y given X if and only if

1. (mY |X)↓X is a vacuous BPA for X, and
2. for any BPA mX for X, mX and mY |X are distinct. Thus, mX ⊕mY |X is a BPA for (X,Y ).

The first condition says that mY |X tells us nothing about X. We will refer to the BPA mX ⊕mY |X
as the joint BPA for (X,Y ) and denote it by mX,Y . It follows from the local computation property
(Eq.(12)) that (mX,Y )

↓X = (mX ⊕mY |X)↓X = mX ⊕ (mY |X)↓X = mX . Thus, the second condition

5 An example is given in [10].
6 If PX(x) = 0, then the conditional has no effect on the joint, and 0/0 can be left undefined, or defined
as 1.
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says the conditional mY |X allows us to extend any BPA mX for X to a joint BPA mX,Y for
(X,Y ) without changing its marginal for X. Notice that mX and mY |X are non-conflicting, i.e.,
the normalization constant K in mX ⊕mY |X is 1 (Eq.(11)).

Given a conditional BPA mY |X for Y given X, we will refer to Y as the head of the conditional,
and X as the tail. A conditional describes the dependency between the head and tail variables.
Although we have defined a conditional BPA with the head and tail being single variables, the
definition generalizes when the head and tail are disjoint subsets of variables.

Definition 2. Suppose r and s are disjoint subsets of variables, and ms|r is a BPA for r ∪ s. We
say ms|r is a conditional BPA for s given r if and only if

1. (ms|r)
↓r is a vacuous BPA for r, and

2. for any BPA mr for r, mr and ms|r are distinct. Thus, mr ⊕ms|r is a BPA for r ∪ s.

In a directed graphical belief function model, we have a conditional associated with each variable
X in the model. The head of the associated condition is X, and the tail consists of the parents of
X. For variables with no parents, we have priors associated with such variables. For convenience,
we can consider priors as conditionals with empty tails. For such BPAs, the first condition in the
definition is trivially true as the sum of the probability masses in a BPA is 1.

Properties of Conditionals The following lemma was stated in [16] where conditionals were defined
using an inverse of the combination operator called removal. Here we prove the same results using
the definition of conditionals above that include only combination and marginalization.

Lemma 1. Suppose r, s, and t are disjoint subsets of variables. Let mr denote a BPA for r, ms|r
denote a conditional BPA with head s and tail r, etc. Then, the following statements are true.

1. mr ⊕ms|r ⊕mt|r∪s = mr∪s∪t.
2. ms|r ⊕mt|r∪s = ms∪t|r.

3. Suppose s′ ⊆ s. Then, (ms|r)
↓r∪s′ = ms′|r.

4. (ms|r ⊕mt|r∪s)
↓r∪t = mt|r.

Proof. 1. mr, ms|r, and mt|r∪s are all distinct by definition of conditionals. Thus,
mr ⊕ms|r ⊕mt|r∪s = (mr ⊕ms|r)⊕mt|r∪s = mr∪s ⊕mt|r∪s = mr∪s∪t.

2. Let ιr denote the vacuous BPA for r. Using the local computation property,

(ms|r ⊕mt|r∪s)
↓r = ((ms|r ⊕mt|r∪s)

↓r∪s)↓r = (ms|r ⊕ (mt|r∪s)
↓r∪s)↓r

= (ms|r ⊕ ιr∪s)
↓r = (ms|r)

↓r = ιr.

Supposemr is a BPA for r. Then, it follows from Statement 1 thatmr⊕(ms|r⊕mt|r∪s) = mr∪s∪t.

3. First, notice that ((ms|r)
↓r∪s′)↓r = (ms|r)

↓r = ιr. Suppose mr is a BPA for r. As mr and ms|r

are distinct, mr and ms′|r are distinct. Thus, mr ⊕ (ms|r)
↓r∪s′ = mr∪s′ .

4. Using the local computation property,

((ms|r ⊕mt|r∪s)
↓r∪t)↓r = ((ms|r ⊕mt|r∪s)

↓r∪s)↓r = (ms|r ⊕ (mt|r∪s)
↓r∪s)↓r

= ((ms|r ⊕ ιr∪s)
↓r = (ms|r)

↓r = ιr.

Suppose mr is a BPA for r. As mr, ms|r, and mt|r∪s are all distinct,

mr ⊕ (ms|r ⊕mt|r∪s)
↓r∪t = (mr ⊕ms|r ⊕mt|r∪s)

↓r∪t = (mr∪s∪t)
↓r∪t = mr∪t.

⊓⊔
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Where do conditionals come from? A conditional BPA mr|s describes the relationship between the
variables in r and s. One source of conditionals is Smets’ conditional embedding [18]. To describe
conditional embedding, consider the case of two variables X and Y . To describe the dependency
between X and Y , suppose that when X = x, our belief in Y is described by a BPA mY |x for
Y . Thus, mY |x : 2ΩY → [0, 1] such that

∑
a∈2ΩY mY |x(a) = 1. The BPA mY |x for Y needs to be

embedded into a BPA mx,Y for (X,Y ) such that

1. mx,Y is a conditional BPA for (X,Y ), i.e., (mx,Y )
↓X is vacuous BPA for X, and

2. when we add the belief that X = x and marginalize the result to Y , we obtain mY |x.

One way to do this is to take each focal element b ∈ 2ΩY ofmY |x, and convert it to the corresponding
focal element

({x} × b) ∪ ((ΩX \ {x})×ΩY ) ∈ 2ΩX,Y (15)

of BPA mx,Y for (X,Y ) with the same mass. It is easy to confirm that this method of embedding
satisfies both conditions mentioned above. If we have several distinct conditionals, e.g., mY |x1

,
mY |x2

, etc., where x1, and x2 are distinct values of X, then we do conditional embedding of each
of these BPAs and then combine the embeddings by Dempster’s combination rule to obtain mY |X .
An example of conditional embedding follows.

Example 1 (Conditional embedding). Consider binary variables X and Y , with ΩX = {x, x̄} and
ΩY = {y, ȳ}. Suppose we have a BPA mY |x for Y given X = x as follows:

mY |x(y) = 0.8, mY |x(ΩY ) = 0.2,

then its conditional embedding into the conditional BPA mx,Y for (X,Y ) is as follows:

mx,Y ({(x, y), (x̄, y), (x̄, ȳ)}) = 0.8, mx,Y (ΩX,Y ) = 0.2.

Similarly, if we have a BPA mY |x̄ for Y given X = x̄ as follows:

mY |x̄(ȳ) = 0.3, mY |x̄(ΩY ) = 0.7,

then its conditional embedding into the conditional BPA mx̄,Y for (X,Y ) is as follows:

mx̄,Y ({(x, y), (x, ȳ), (x̄, ȳ)}) = 0.3, mx̄,Y (ΩX,Y ) = 0.7.

Assuming we have these two BPAs, and their corresponding embeddings, it is clear that the two BPA
mx,Y and mx̄,Y are distinct, and can be combined with Dempster’s rule of combination, resulting
in the conditional BPA mY |X = mx,Y ⊕mx̄,Y for (X,Y ). mY |X has the following properties. First,

(mY |X)↓X = ιX , where ιX denotes the vacuous BPA for X. Second, if we combine mY |X with
deterministic BPA mX=x({x}) = 1 for X, and marginalize the combination to Y , then we get
mY |x, i.e., (mY |X ⊕ mX=x)

↓Y = mY |x. Third, (mY |X ⊕ mX=x̄)
↓Y = mY |x̄. mY |X is the belief

function equivalent of CPT PY |X in probability theory. ⊓⊔

In probability theory, a joint distribution PX,Y can always be factored into marginal PX =
(PX,Y )

↓X and a conditional PY |X such that PX,Y = PX ⊗PY |X . This is not true in the D-S theory.
The following proposition describes when a joint belief function can be factored into a marginal
and a conditional.
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Proposition 1. Suppose mX,Y is a BPA for {X,Y } with corresponding CF QmX,Y
. Let mX denote

the marginal of mX,Y for X, i.e., mX = (mX,Y )
↓X . Then, QmX,Y

⊖ QmX
is a CF if and only if

there exists a BPA m for {X,Y } such that mX,Y = mX ⊕m, and m is a conditional for Y given
X.

A proof of this proposition can be found in [8]. The proposition states that if we remove BPA mX

from mX,Y such that mX is included in mX,Y in the sense that mX,Y is Dempster’s combination
of the marginal mX for X and a conditional m for Y given X, then such removal always results in
a well-defined CF.

Smets’ conditional embedding is only one way to obtain conditionals. Black and Laskey [2]
propose other methods to get conditionals. The following example from [1], called the captain’s
problem, has many examples of conditionals. The description of Almond’s captain’s problem is
taken from [9].

Example 2 (Captain’s problem). A ship’s captain is concerned about how many days his ship may
be delayed before arrival at a destination. The arrival delay is the sum of departure delay and
sailing delay. Departure delay may be a result of maintenance (at most one day), loading delay (at
most one day), or a forecast of bad weather (at most one day). Sailing delays may result from bad
weather (at most one day) and whether repairs are needed at sea (at most one day). If maintenance
is done before sailing, chances of repairs at sea are less likely. The forecast is 80% reliable. The
captain knows the loading delay and whether maintenance is done before departure.

Fig. 1. The directed acyclic graph for the captain’s problem. The Greek alphabets adjacent to a variable
denote the prior or conditional or evidence associated with the variable.

Table 1 describes the variables, their state spaces, and associated conditionals, and Fig. 1 shows
the directed acyclic graph associated with this problem. The details of some of the conditional BPAs
are as follows.

1. Weather forecast is 80% accurate. ϕ1 is a conditional BPA for F given W .

ϕ1({(gw, gf ), (bw, bf )}) = 0.8, ϕ1(ΩW,F ) = 0.2.
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Table 1. The variables, their state spaces, and associated conditionals in the captain’s problem.

Variable Name State Space, Ω Associated Conditional

W Actual weather {gw, bw} vacuous for W
F Forecasted weather {gf , bf} ϕ1 for F |W
L Loading delay? {tl, fl} λ for L
M Maintenance done? {tm, fm} µ for M
R Repair at sea needed? {tr, fr} ρ1, ρ2 for R given M = tm, tf , resp.
D Departure delay (in days) {0, 1, 2, 3} δ for D|{F,L,M}
S Sailing delay (in days) {0, 1, 2, 3} σ for S|{W,R}
A Arrival delay (in days) {0, 1, 2, 3, 4, 5, 6} α for A|{D,S}

2. Bad weather and repair at sea each adds a day to sailing delay. This proposition is true 90% of
the time. σ is a conditional for S given (W,R).

σ({(gw, fr, 0), (bw, fr, 1), (gw, tr, 1), (bw, tr, 2)}) = 0.9, σ(ΩW,R,S) = 0.1.

3. Departure delay may be a result of maintenance (at most 1 day), loading delay (at most 1 day),
or a forecast of bad weather (at most 1 day). δ is a deterministic conditional BPA for D given
{F,L,M}.

δ({(gf , fl, fm, 0), (bf , fl, fm, 1), (gf , tl, fm, 1), (gf , fl, tm, 1),
(bf , tl, fm, 2), (bf , fl, tm, 2), (gf , tl, tm, 2), (bf , tl, tm, 3)}) = 1.

4. The arrival delay is the sum of departure delay and sailing delay. α is a deterministic conditional
BPA for A given {D,S}.

α({(0, 0, 0), (0, 1, 1), (0, 2, 2), (0, 3, 3), (1, 0, 1), (1, 1, 2), (1, 2, 3), (1, 3, 4),
(2, 0, 2), (2, 1, 3), (2, 2, 4), (2, 3, 5), (3, 0, 3), (3, 1, 4), (3, 2, 5), (3, 3, 6)}) = 1.

4 Summary & Conclusions

We have explicitly defined conditionals in the D-S theory using only the marginalization and Demp-
ster’s combination operators. The main goal of the definition is to enable the construction of di-
rected graphical belief function models. Conditional belief functions are also defined in [16] using
an inverse of Dempster’s combination operator called removal. Since Dempster’s combination is
pointwise multiplication of commonality functions followed by normalization, removal consists of
division of commonality functions followed by normalization. Thus, mY |X = mX,Y ⊖mX . One issue
with this definition is that a conditional BPA is defined starting from a joint BPA, which is not
useful in constructing a joint BPA. Another issue is that if mX is not already included in mX,Y , the
removal operation may result in a BPA with negative masses. We have stated some properties of
conditionals given in [16] and these properties remain valid using our definition. Smets’ conditional
embedding [18] is one way to obtain conditionals. There are other ways to obtain conditionals, and
some examples of conditionals are described using Almond’s captain’s problem [1].
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