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Abstract. We investigate learning of belief function compositional mod-
els from data using information content and mutual information based
on two different definitions of entropy proposed by Jiroušek and Shenoy
in 2018 and 2020, respectively. The data consists of 2,310 randomly gen-
erated basic assignments of 26 binary variables from a pairwise consistent
and decomposable compositional model. We describe results achieved by
three simple greedy algorithms for constructing compositional models
from the randomly generated low-dimensional basic assignments.

Keywords: Compositional models · Entropy of Dempster-Shafer
belief functions · Decomposable entropy of Dempster-Shafer belief
functions · Mutual information · Information content

1 Introduction

Probabilistic compositional models were first proposed in [3] for discrete vari-
ables. It has since been generalized for many other uncertainty calculi [7]. In this
paper, we are concerned with compositional models for Dempster-Shafer (DS)
belief functions [5].

In the probabilistic framework, one strategy for learning models from data
is to use information-theoretic concepts such as information content or mutual
information based on the concept of Shannon’s entropy [13]. In this paper, we
investigate the use of two measures of entropy of belief functions defined by
Jiroušek and Shenoy in 2018 [8] and 2020 [9]. The 2018 definition does not
satisfy the subadditivity property, whereas the 2020 definition is the only one
that is decomposable in the sense that H(mX ⊕ mY |X) = H(mX) + H(mY |X).
Here, mX is a basic assignment for some variable X, mY |X is a conditional
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basic assignment for Y |X such that its marginal for X is vacuous, ⊕ denotes
Dempster’s combination rule, and H(m) denotes entropy of basic assignment m.

Unfortunately, in contrast to probabilistic model learning, in the framework
of belief function, we have to cope with several additional problems arising from
the fact that we cannot support the respective procedures by belief function
information theory. Not having an analog to probabilistic Kullback-Leibler diver-
gence [12], we have problems even with determining, which of two different mod-
els is a better approximation of a given multidimensional belief function.

To study the applicability of the above-mentioned entropies, we concentrate
only on a part of a complete model learning procedure. As we will see below,
to define a joint compositional model, one starts with a set of low-dimensional
marginal belief functions and then compose them in some order. In the compu-
tational experiments, we will randomly generate sets of pairwise consistent basic
assignments, and compare three different algorithms seeking their best ordering.
The first algorithm is based on decomposable entropy where we learn a com-
positional model that minimizes mutual information. The second is based on
maximizing information content using the 2018 Jiroušek-Shenoy’s definition of
entropy that has two components—Dubois-Prade’s entropy [2] of a basic assign-
ment and Shannon’s entropy of plausibility transform of a basic assignment
[1]. The third is a modification of the second definition where the plausibility
transform is replaced by the pignistic transform [15]. Not having a general tool
allowing us to compare the results, we randomly generate only the situations
when the optimality of a solution can be easily recognized. It occurs, as we will
see below, when the learned model is decomposable. Our results indicate that
the second and third algorithms are more effective than the first one in learning
decomposable compositional models.

2 Preliminaries

Consider a finite set of binary variables W = {S, T, U, . . .}. A basic assignment
for variables V ⊆ W is a mapping mV : 2ΩV → [0, 1], such that

∑
a∈2ΩV mV(a) =

1 and mV(∅) = 0, where ΩV = {0, 1} × {0, 1} × . . . × {0, 1} is a |V|-dimensional
Cartesian product of values of the variables in V. When the set of variables is
evident from the context, or, if the set of variables is irrelevant, we omit the
index V. We say that a ⊆ Ω is said to be a focal element of m if m(a) > 0.

For basic assignment mV , we often consider its marginal basic assignment for
U ⊆ V, denoted by m↓U

V . An analogous notation is used also for projections: for
a ∈ ΩV , let a↓U denote the element of ΩU that is obtained from a by omitting
the values of variables from V \ U , i.e., for a ⊆ ΩV , a↓U = {a↓U : a ∈ a}. The
marginal of basic assignment mV for U ⊆ V is defined as follows: m↓U

V (b) =∑
a⊆ΩV : a↓U=b mV(a) for all for all b ⊆ ΩU .
A basic assignment m can be described by equivalent functions such as

belief function, plausibility function, or commonality function. The latter two
are defined as follows:
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Plm(a) =
∑

b⊆Ω:b∩a �=∅
m(b), Qm(a) =

∑

b⊆Ω:b⊇a

m(b).

When normalizing the plausibility function on singletons, one gets a probability
mass function on Ω called a plausibility transform of basic assignment m [1].
Another popular probabilistic representation of a belief function is the so-called
pignistic transform advocated by Philippe Smets [15] (though, as argued in [1], it
is inconsistent with Dempster’s combination rule). Let λm and πm denote these
two transforms, respectively, as follows. Suppose a ∈ Ω. Then,

λm(a) =
Plm({a})

∑
b∈Ω Plm({b})

, and πm(a) =
∑

b⊆Ω:a∈b

m(b)
|b| .

3 Compositional Models

To construct multidimensional models from low-dimensional building blocks, we
need a binary operator combining two low-dimensional (marginal) basic assign-
ments into one (joint) basic assignment. One such binary operator � is called a
composition operator if it satisfies the following four axioms.

A1 (Domain): mU1 � mU2 is a basic assignment for variables U1 ∪ U2.
A2 (Composition preserves first marginal): (mU1 � mU2)

↓U1 = mU1 .
A3 (Commutativity under consistency): If mU1 and mU2 are consistent, i.e.,

m↓U1∩U2
U1

= m↓U1∩U2
U2

, then mU1 � mU2 = mU2 � mU1 .
A4 (Associativity under special condition): If U1 ⊃ (U2 ∩U3), or, U2 ⊃ (U1 ∩U3)

then, (mU1 � mU2) � mU3 = mU1 � (mU2 � mU3).

For two operators satisfying these axioms see [5]. These operators account for the
common information in two marginal basic assignments when there is overlap in
the domain of the marginals.

By a compositional model, we mean a basic assignment m1� · · ·�mn obtained
by multiple applications of the composition operator. Since the composition oper-
ator is generally neither associative nor commutative, if not specified otherwise
by parentheses, the operators are always performed from left to right, i.e.,

m1 � m2 � m3 � . . . � mn = (. . . ((m1 � m2) � m3) � . . . � mn−1) � mn.

Thus, for a given operator of composition, a (joint) compositional model is
uniquely defined by an ordered sequence of low-dimensional (marginal) belief
functions. In this paper, we consider only a part of the complete model learning
process. Namely, given a set of low-dimensional marginal belief functions, what
sequence should we use to construct the joint. To specify this step properly,
consider a (finite) system W of small subsets of the considered variables W. The
vague assumption that U ∈ W is small is made to avoid the computational prob-
lems connected with computations with the corresponding basic assignments.
Thus, we assume that for each U ∈ W we have (or we can easily get) a basic
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assignment mU and that this basic assignment, as well as the corresponding
commonality function, can be effectively represented in computer memory.

Given system W, we study finding a sequence of sets {Ui}i=1,...,n from W

such that the model mU1 � mU2 � · · · � mUn
represents as much of the relations

among the variables as possible. As discussed in Sect. 1, we do not have a general
tool for comparing two models. Therefore, we will consider a specific situations
in which one can recognize an optimal solution regardless of the composition
operator used.

To describe the necessary theoretical results consider the following notation.
Let mi denote mUi

. Thus, we speak about a compositional model m1 � m2 �
. . . � mn, which is a |U1 ∪ . . . ∪ Un|-dimensional basic assignment, in which basic
assignment mi is defined for variables Ui. It is said to be perfect if all mi’s are
marginals of the model. Recall that pairwise consistency of mi’s is a necessary
but not sufficient condition for perfectness of model m1�. . .�mn. A perfect model
reflects all the information contained in the low-dimensional basic assignments
from which it is composed. So, it is not surprising that the optimal solution of a
model learning algorithm is, if it exists, a perfect model. Quite often we can take
advantage of the fact that such a solution is not defined by a unique sequence of
low-dimensional basic assignments. In [4,7], the following two propositions are
proved.

Proposition 1 (on perfect models). Consider a perfect model m1 � . . . �mn,
and a permutation of its indices i1, . . . , in such that mi1 �. . .�min

is also perfect.
Then m1 � . . . � mn = mi1 � . . . � min

.

Compositional model m1 � m2 � . . . � mn is said to be decomposable if the
sequence of sets U1,U2, . . . ,Un satisfies the so-called running intersection prop-
erty : ∀i = 3, . . . , n ∃j < i : Ui ∩ (U1 ∪ . . . ∪ Ui−1) ⊆ Uj .

Proposition 2 (on consistent decomposable models). Decomposable
model m1 � . . . � mn is perfect if and only if basic assignments m1, . . . , mn are
pairwise consistent, i.e., ∀{i, j} ⊂ {1, 2, . . . , n} : m

↓Ui∩Uj

i = m
↓Ui∩Uj

j .

4 Entropy and Information Content

The goal of this paper is to study the learning of compositional models from data
using entropy and related information quantities. Probabilistic model learning
algorithms are often based on characteristics of information theory. They may
maximize the information content of the probability distribution P (U) defined
as follows: (Hs denotes the classical Shannon’s entropy)

IC(P (U)) =
∑

X∈U
Hs(P (X)) − Hs(P (U))

=
∑

a∈ΩU :P (a)>0

P (a) log
(

P (a)
∏

X∈U P (a↓X)

)

.
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Alternatively, model construction may be based on mutual information defined
as follows: (U and V are disjoint)

MI(P (U ‖ V)) = Hs(P (U)) + Hs(P (V)) − Hs(P (U ∪ V))

=
∑

a∈ΩU∪V :P (a)>0

P (a) log
(

P (a)
P (a↓U ) · P (a↓V)

)

.

Notice that both information content and mutual information are non-
negative. The information content IC measures the strength of dependence
among the variables. All variables are independent (which is much stronger
requirement than the pairwise independence of variables) under probability dis-
tribution P if and only if IC(P ) = 0. Therefore, a model learning algorithm
maximizing IC(P ) looks for a distribution that represents as much knowledge
as possible. Thus, the goal is to find a model maximizing the information con-
tent, which is, due to its definition, equivalent to minimizing Shannon entropy
within the class of models with the same one-dimensional marginals.

In this paper, we investigate learning compositional models in the framework
of belief functions with the help of similar information-theoretic characteristics
of basic assignments. We consider two definitions of entropy introduced in [8]
and [9]. The former paper proposes

HA(m) =
∑

a⊆Ω

m(a) log(|a|) + Hs(λm),

where the first part of this expression is the Dubois-Prade entropy [2], and the
second part is the Shannon entropy of the plausibility transform of m. This
entropy is computationally inexpensive, and, as argued in [8], it is among the
few that are consistent with the semantics of Dempster-Shafer theory of evi-
dence. Its disadvantage is that it is not subadditive, and therefore the derived
information-theoretic characteristics ICA(mU ) =

∑
X∈U HA(m↓X

U ) − HA(mU ),
and MIA(m(U||V)) = HA(m↓U ) + HA(m↓V) − HA(m↓U∪V) need not be pos-
itive. Unfortunately, this manifests itself quite often even in very simple sit-
uations, and therefore we also study its approximation defined by HP (m) =∑

a⊆Ω m(a) log(|a|)+Hs(πm) based on the pignistic transform πm [10]. Though
this entropy has also been shown to be not subadditive [11], in our computa-
tional experiments (described in Sect. 6), we encountered that the information
content based on this entropy ICP (mU ) =

∑
X∈U HP (m↓X

U ) − HP (mU ), or the
corresponding mutual information MIP (m(U ‖ V)) = HP (m↓U ) + HP (m↓V) −
HP (m↓U∪V) was rarely negative1.

The other entropy considered in this paper is the decomposable entropy intro-
duced in [9]. It is defined as follows:

HS(m) =
∑

a⊆Ω

(−1)|a|Qm(a) log(Qm(a)). (1)

1 In our experiments, MIA was negative in about 12% of situations, whilst MIP was
negative only in 0.1% of cases.
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It is defined using the commonality function of basic assignment m, and there-
fore the conversion of m to Qm is required. In general, this function is not
always non-negative. However, its merit is that it is the only definition of
belief function entropy that satisfies an additivity property in the sense that
HS(mX ⊕ mY |X) = HS(mX) + HS(mY |X) (here, mX is a basic assignment for
X, mY |X is a conditional basic assignment for Y given X such that its marginal
for X is vacuous, and ⊕ denotes Dempster’s combination rule). Such a property
characterizes Shannon’s entropy for probability mass functions, and is often used
in machine learning when constructing probabilistic models from data. To use
this property when computing the entropy for compositional models, the condi-
tional entropy is defined as follows (U and V are disjoint sets of variables, for
which m is defined):

HS(mU|V) =
∑

a⊆ΩU∪V

(−1)|a|Qm↓U∪V (a) log(QmU|V (a)), (2)

where QmU|V (a) = Qm↓U∪V (a)/Qm↓V (a↓V) for all a ⊆ ΩU∪V (note that for V = ∅,
HS(mU|V) = HS(mU )). Thus, we see that this entropy can be computed for
compositional models of large dimensions if the composition operator satisfies
the following axiom:

A5 (Conditional independence): For basic assignment mU1 �mU2 , variables U1 \
U2 and U2 \ U1 are conditionally independent given variables U1 ∩ U2.

Axiom A5 implicitly defines conditional independence for sets of variables
in the DS theory. This definition is consistent with the definition of conditional
independence in valuation-based systems [14].

Using the notation from Sect. 3, let Ûj denote U1∪ . . .∪Uj−1. We get for such
compositional models:

HS(m1 � . . . � mn) = HS(m1) +
n∑

j=2

HS

(
mj(Uj \ Ûj |Uj ∩ Ûj)

)
. (3)

5 Algorithms

Based on an analogy with probabilistic model learning processes, we may either
look for a model with the smallest possible entropy or equivalently, a model
maximizing the corresponding informational content. Therefore, we consider the
following simple heuristic algorithm to minimize Eq. (3).

Min-entropy Greedy Algorithm.

1. Define U1 := arg maxU∈W(ICS(mU )), Û = U1, and n:=1.
2. Until

(
Û = W

)

find Un+1 := arg minU∈W
(HS(mU (U \ Û|U ∩ Û))),

where W =
{

U ∈ W : U \ Û �= ∅
}

,

and redefine Û := Û ∪ Un+1, n := n + 1.
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This algorithm cannot be used for entropy other than HS . If all basic assign-
ments are sufficiently small (the current version of our code cannot compute HS

entropy for basic assignments of dimensions larger than four), the algorithm is
very efficient. Note that the algorithm (as well as the one from bellow) ends
when all variables from W are covered by specified sequence U1, . . . ,Un. If there
are some sets left, then adding respective basic assignments to the compositional
model would not make any change because of Axiom A2 from Sect. 3.

An alternative model learning algorithm is based on the computation of
information content using entropies HA and HM .

Max-information Greedy Algorithm.

1. Define U1 := arg maxU∈W(ICA(mU )), Û = U1, and n:=1.
2. Until

(
Û = W

)

find Un+1 := arg maxU∈W

(
MIA(mU (U \ Û ‖ U ∩ Û))

)
,

where W =
{
U ∈ W : U \ Û �= ∅

}
,

and redefine Û := Û ∪ Un+1, n := n + 1.

Similar to the case of min-entropy greedy algorithm, the efficiency of this
algorithm follows from the fact that all the necessary computations are real-
ized with basic assignments mU , U ∈ W. The algorithm does not compute any
information-theoretic quantity of a complete model. Naturally, in general, this
greedy algorithm doesn’t find an optimal model either.

6 Results of Experiments

In this section, we briefly describe results achieved when applying the algo-
rithms described in Sect. 5 to randomly generated systems of low-dimensional
basic assignments. When constructing several compositional models from a sys-
tem of low-dimensional assignments, we do not have a criterion enabling us
to say, which of them is the best. The only characteristic we can compute for
the multidimensional compositional models is their HS entropy. Unfortunately,
as it can be shown by examples, neither this characteristic guarantees that it
achieves the lowest value for the optimal model. Thus, as the main criterion for
the comparison of the considered approaches we consider how often they find
decomposable models. We know that if it exists, then it is optimal.

In our computational experiments, we considered 26 binary variables. Ran-
domly generated systems of basic assignments were such that

– the dimension of any basic assignment was not greater than 4,
– the basic assignment in a system were pairwise consistent,
– the basic assignments could be ordered so that the sets of variables met the

running intersection property.
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According to these rules, we generated 2,130 systems of basic assignments.
Each system was generated by the following procedure: First, an ordered cover-
ing U1, . . . Un of all 26 binary variables satisfying the running intersection prop-
erty was generated. This systems of sets was used for sequential generation of
corresponding basic assignments (defined over respective variables) as follows.

1. mU1 is randomly generated
2. for i ∈ 2 . . . n

find j < i : Ui ∩ (U1 ∪ . . . ∪ Ui−1) ⊆ Uj

mUi
is randomly generated

mUi
= (mUj

� mUi
)↓Ui

By randomly generated we mean the following. Randomly set the number
of focal elements, randomly generate focal elements, and randomly generate
respective mass assignments. This procedure guarantees pairwise consistency of
respective basic assignments [6]. Using the ibelief package [16], we generated
random belief functions of four types with respect to their focal elements: ran-
dom, random with Ω guaranteed, quasibayesian, and nested with Ω guaranteed.
However, it appeared that the type does not have any significant impact on the
result of the experiment and therefore the type is not reported bellow. All cal-
culations were performed in R language using our experimental routines based
on relational databases.

To each generated system of basic assignments, we applied the min-entropy
greedy algorithm, and two versions of the max-information greedy algorithm
using entropies HA and HP . As mentioned earlier, the main criterion to evalu-
ate the results was how often the algorithms found decomposable models. Even
though all the generated systems could be ordered to meet the running intersec-
tion property, we could not expect that this goal would be always achieved. As
an extreme situation consider a system of basic assignments consisting of basic
assignments for independent variables. Then all models describe a multidimen-
sional basic assignment of independent variables regardless of the ordering of low-
dimensional assignments in a model. The existence of only one basic assignment
meeting an improper conditional independence may prevent the construction of
a decomposable model. Since we control only systems of variables and not the
values of basic assignments (these were left to the random generator), we could
not expect that there would be a chance that a model learning process would
find decomposable models for all generated data. Actually, in 295 cases (from
2,130 generated) none of the three algorithms found a decomposable model.

7 Conclusions

A summary of results from the experiments is shown in Fig. 1, where the numbers
indicate the number of successes of the respective algorithms. One can see that
in 524 cases all three algorithms found decomposable models. The min-entropy
greedy algorithm with HS entropy found 524 + 43 + 132 + 18 = 717/2,130 =
0.337% decomposable models, the max-information greedy algorithm using HA



Entropy-Based Model Learning 125

Fig. 1. A Venn diagram indicating the number of successes of the three algorithms.

entropy found 17 + 1076 + 524 + 18 = 1,635/2,130 = 0.768% decomposable
models, and the max-information greedy algorithm using HP entropy found
1076 + 25 + 43 + 524 = 1,668/2,130 = 0.783% decomposable models. Thus, we
conclude that the min-entropy greedy process with HS entropy is not as efficient
as max-information greedy process with either HA or HM entropies for learning
decomposable compositional models.

Notice also that the max-information greedy algorithm does not depend very
much on the entropy used. They both succeed for about 0.77% of randomly gen-
erated systems of basic assignments. When using HP , it found a decomposable
model only in 33 more cases (about 1.5%) than when using HA.

The computations required by the min-entropy greedy algorithm required
about 35 times more time than that of the max-information greedy algorithm.
This is because the computations of HS require transformation of a basic assign-
ment into a commonality function. If the data were given in a form of common-
ality functions, the difference would not be so striking (but the space complexity
would noticeably increase).
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