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Abstract. We define entropy of belief functions in the Dempster-Shafer
(D-S) theory that satisfies a compound distributions property that is
analogous to the property that characterizes Shannon’s definitions of
entropy and conditional entropy for discrete probability distributions.
None of the existing definitions of entropy for belief functions in the D-S
theory satisfy such a compound distributions property. We describe some
important properties of our definition.

1 Introduction

The main goal of this paper is to define entropy of belief functions in the
Dempster-Shafer’s theory [2] [4] that satisfies a compound distributions prop-
erty analogous to the one that characterizes Shannon’s definitions of entropy
and conditional entropy for discrete probability distributions [6]. If PX,Y is a
probability mass function (PMF) of (X,Y ), and it is decomposed into PMF PX
for X, and conditional probability table PY |X so that PX,Y = PX ⊗ PY |X , then
Shannon’s definitions of entropy and conditional entropy satisfy Hs(PX,Y ) =
Hs(PX) +Hs(PY |X). Here, ⊗ denotes probabilistic combination, which is point-
wise multiplication followed by normalization.

In this paper, we provide definitions of entropy and conditional entropy of
belief functions, so that if mX,Y is a basic probability assignment (BPA) for
(X,Y ) that is constructed from a BPA mX for X, and a conditional BPA mY |X
for Y given X, such that mX,Y = mX ⊕mY |X , where ⊕ is Dempster’s combina-
tion rule, then our definitions satisfy H(mX,Y ) = H(mX) + H(mY |X). This is
the main contribution of this paper. Our definitions of entropy and conditional
entropy have several nice properties similar to corresponding properties of Shan-
non’s entropy. Here, we do not delve into philosophical discussions about what
entropy means. Our exposition focusses exclusively on mathematical properties
of entropy.
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2 Shannon’s Definition of Entropy

In this section, we briefly review Shannon’s definition of entropy of PMFs of
discrete random variables, and its properties. Most of the material in this section
is taken from [6].

Definition 1. Suppose PX is a PMF of discrete variable X. The entropy of
PX , denoted by Hs(PX), is defined as

Hs(PX) = −
∑
x∈ΩX

PX(x) log2 (PX(x)) . (1)

Suppose PX,Y is a joint PMF of (X,Y ). Then, the joint entropy of PX,Y is
as in Eq. (1), i.e.,

Hs(PX,Y ) = −
∑

(x,y)∈ΩX,Y

PX,Y (x, y) log2 (PX,Y (x, y)) .

Suppose PX,Y is a PMF of (X,Y ) with PX as its marginal PMF for X.
Suppose we observe X = a for some a ∈ ΩX such that PX(a) > 0. This ob-
servation is represented by the PMF PX=a for X such that PX=a(a) = 1. Let
PY |a = (PX,Y ⊗ PX=a)↓Y denote the posterior PMF of Y , where ⊗ denotes
pointwise multiplication followed by normalization, the combination rule in prob-
ability theory. The posterior entropy of PY |a is as in Eq. (1), i.e., Hs(PY |a) =
−
∑
y∈ΩY PY |a(y) log2(PY |a(y)).

Shannon [6] derives the expression for entropy of PX axiomatically using four
axioms as follows:

1. Axiom 1 (Existence): H(PX) exists.
2. Axiom 2 (Continuity): H(PX) should be a continuous function of PX .
3. Axiom 3 (Monotonicity): If we have an equally likely PMF, then H(PX)

should be a monotonically increasing function of |ΩX |.
4. Axiom 4 (Compound distributions): If a PMF is factored into two PMFs, then

its entropy should be the sum of entropies of its factors, e.g., PX,Y (x, y) =
PX(x)PY |x(y), then H(PX,Y ) = H(PX) +

∑
x∈ΩX PX(x)H(PY |x).

Shannon [6] proves that the only function Hs that satisfies Axioms 1–4 is of
the form Hs(PX) = −K

∑
x∈ΩX PX(x) log (PX(x)), where K is a constant that

depends on the choice of units of measurement.
Let PY |X : ΩX,Y → [0, 1] be a function such that PY |X(x, y) = PY |x(y) for

all (x, y) ∈ ΩX,Y . As PY |x(y) is only defined for x ∈ ΩX such that PX(x) > 0,
we will assume that PY |X is only defined for x ∈ ΩX such that PX(x) > 0. PY |X
is not a PMF, but can be considered as a collection of PMFs, and it is called
a conditional probability table (CPT) in the Bayesian network literature. If we
combine PX and PY |X , we obtain PX,Y , i.e., PX,Y = PX ⊗ PY |X .

Definition 2. Suppose PY |X is a CPT of Y given X for all x ∈ ΩX such
that PX(x) > 0. Then the conditional entropy of PY |X is defined as

Hs(PY |X) =
∑
x∈ΩX

PX(x)Hs(PY |x). (2)
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It follows from Axiom 4 that

Hs(PX,Y ) = Hs(PX ⊗ PY |X) = Hs(PX) +Hs(PY |X). (3)

3 Basic Definitions of the D-S Belief Functions Theory

In this section we review the basic definitions in the D-S belief functions theory,
including functional representations of uncertain knowledge, and operations for
making inferences from such knowledge.

Belief functions can be represented in four different ways: basic probability
assignments (BPAs), belief functions, plausibility functions, and commonality
functions. Here, we focus only on BPAs and commonality functions.

BPAs. Suppose X is a random variable with state space ΩX . Let 2ΩX denote
the set of all non-empty subsets of ΩX . A BPA m for X is a function m : 2ΩX →
[0, 1] such that ∑

a∈2ΩX

m(a) = 1. (4)

The non-empty subsets a ∈ 2ΩX such that m(a) > 0 are called focal elements
of m. We say m is consonant if the focal elements of m are nested, i.e., if
a1 ⊂ . . . ⊂ am, where {a1, ..., ar} denotes the set of all focal elements of m.
We say m is quasi-consonant if the intersection of all focal elements of m is
non-empty. A BPA that is consonant is also quasi-consonant, but not vice-versa.
Thus, a BPA with focal elements {x1, x2} and {x1, x3} is quasi-consonant, but
not consonant. If all focal elements of m are singleton subsets of ΩX , then we
say m is Bayesian. In this case, m is equivalent to the PMF P for X such that
P (x) = m({x}) for each x ∈ ΩX . If ΩX is a focal element, then we say m is
non-dogmatic, and dogmatic otherwise. Thus, a Bayesian BPA is dogmatic.

Commonality Functions. The information in a BPA m can also be represented
by a corresponding commonality function Qm that is defined as follows.

Qm(a) =
∑

b∈2ΩX : b⊇a

m(b) (5)

for all a ∈ 2ΩX . Qm is a non-increasing function in the sense that if b ⊆ a, then
Qm(b) ≥ Qm(a). Finally, Qm is a normalized function in the sense that∑

a∈2ΩX

(−1)|a|+1Qm(a) =
∑

b∈2ΩX

m(b) = 1. (6)

Thus, any non-increasing, non-negative function that satisfies Eq. (6) qualifies
as a commonality function.

Next, we describe two main operations for making inferences.
Dempster’s Combination Rule In the D-S theory, we can combine two BPAs

m1 and m2 representing distinct pieces of evidence by Dempster’s rule [2] and
obtain the BPA m1 ⊕m2, which represents the combined evidence.
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Let X denote a finite set of variables. The state space of X is ×X∈XΩX .
Thus, if X = {X,Y } then the state space of {X,Y } is ΩX ×ΩY .

Projection of states simply means dropping extra coordinates; for example, if
(x, y) is a state of (X,Y ), then the projection of (x, y) to X, denoted by (x, y)↓X ,
is simply x, which is a state of X.

Projection of subsets of states is achieved by projecting every state in the
subset. Suppose b ∈ 2ΩX,Y . Then b↓X = {x ∈ ΩX : (x, y) ∈ b}. Notice that
b↓X ∈ 2ΩX .

Vacuous extension of a subset of states of X1 to a subset of states of X2, where
X2 ⊇ X1, is a cylinder set extension, i.e., if a ∈ 2X1 , then a↑X2 = a × ΩX2\X1

.

Thus, if a ∈ 2ΩX , then a↑{X,Y } = a×ΩY .
Suppose mX is a BPA for X, and X is such that X ∈ X . Then the vacuous

extension of m to X , denoted by m↑XX , is the BPA for X such that m↑XX (a↑X ) =

mX(a), for all a ∈ 2ΩX , i.e., all focal elements of m↑XX are vacuous extensions of
focal elements of mX to X , and they have the same corresponding values.

We will define Dempster’s rule in terms of commonality functions [4]. Suppose
m1 and m2 are BPAs for X1 and X2, respectively. Suppose Qm↑X

1
and Qm↑X

2

are commonality functions corresponding to BPAs m↑X1 and m↑X2 , respectively,
where X = X1 ∪ X2. The commonality function Qm1⊕m2

corresponding to BPA
m1 ⊕m2 is

Qm1⊕m2
(a) = K−1Qm↑X

1
(a)Qm↑X

2
(a), (7)

for all a ∈ 2ΩX , where the normalization constant K is

K =
∑

a∈2ΩX

(−1)|a|+1Qm↑X
1

(a)Qm↑X
2

(a). (8)

The definition of Dempster’s rule assumes that the normalization constant K is
non-zero. If K = 0, then the two BPAs m1 and m2 are said to be in total conflict
and cannot be combined. If K = 1, we say m1 and m2 are non-conflicting.

Marginalization Marginalization in D-S theory is addition of values of BPAs.
Suppose m is a BPA for X . Then, the marginal of m for X1, where X1 ⊆ X ,
denoted by m↓X1 , is a BPA for X1 such that for each a ∈ 2ΩX1 ,

m↓X1(a) =
∑

b∈2ΩX : b↓X1= a

m(b). (9)

Conditional belief functions. Consider a BPA mX for X such that mX({x}) >
0. Suppose that there is a BPA for Y expressing our belief about Y if we know
that X = x, and denote it by mY |x. Notice that mY |x : 2ΩY → [0, 1] is such that∑

a∈2ΩY mY |x(a) = 1. We can embed this BPA for Y into a conditional BPA for
(X,Y ), which is denoted by mx,Y , such that the following four conditions hold.

First, mx,Y tells us nothing about X, i.e., m↓Xx,Y (ΩX) = 1. Second, mx,Y tells

us nothing about Y , i.e., m↓Yx,Y (ΩY ) = 1. Third, if we combine mx,Y with the
BPA mX=x for X such mX=x({x}) = 1 using Dempster’s rule, and marginalize
the result to Y we obtain mY |x, i.e., (mx,Y ⊕mX=x)↓Y = mY |x. Fourth, if we
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combine mx,Y with the BPA mX=x̄ for X such mX=x̄({x̄}) = 1 using Dempster’s
rule, and marginalize the result to Y we obtain the vacuous BPA for Y , i.e.,
(mx,Y ⊕mX=x̄)↓Y (ΩY ) = 1. One way to obtain such an embedding is suggested
by Smets [7] (see also [5]), called conditional embedding, and it consists of taking
each focal element b ∈ 2ΩY of mY |x, and converting it to a corresponding focal
element of mx,Y (with the same mass) as follows: ({x}×b)∪ ((ΩX \{x})×ΩY ).
It is easy to confirm that this method of embedding satisfies all four conditions
mentioned above.

This completes our brief review of the D-S belief function theory. For further
details, the reader is referred to [4].

4 A Decomposable Entropy for the D-S Theory

In this section, we provide a new definition of entropy of belief functions in the
D-S theory, and describe its properties. This new definition is designed to sat-
isfy a compound distributions property analogous to the compound distribution
property that characterizes Shannon’s entropy of PMFs.

Definition 3. Suppose mX is a BPA for X with state space ΩX , and suppose
QmX denotes the commonality function corresponding to mX . Then the entropy
of mX , denoted by H(mX), is defined as follows:

H(mX) =
∑

a∈2ΩX

(−1)|a|QmX (a) log2(QmX (a)). (10)

If QmX (a) = 0, we will follow the convention that QmX (a) log2(QmX (a)) = 0 as
limθ→0+ θ log2(θ) = 0.

This is a new definition of entropy that has not been proposed earlier in the
literature. The closest definition is due to Smets [8], where H(m) is defined as

H(m) = −
∑

a∈2ΩX

log2 (Qm(a)) ,

but only for non-dogmatic BPAs m. Our definition holds for all BPAs. Also, our
sum is an alternating weighted sum, whose sign depends on the cardinality of
non-empty subset a.

Suppose mX,Y is a joint BPA for (X,Y ). Then the joint entropy of mX,Y is
as in Eq. (10), i.e.,

H(mX,Y ) =
∑

a∈2ΩX,Y

(−1)|a|QmX,Y (a) log2(QmX,Y (a)).

Suppose mX,Y is a BPA for (X,Y ) with mX as its marginal BPA for X.
Suppose we observe X = a for some a ∈ ΩX such that mX({a}) > 0. This
observation is represented by the BPA mX=a such that mX=a({a}) = 1. Let
mY |a = (mX,Y ⊕mX=a)↓Y denote the posterior BPA for Y , and its posterior en-

tropy is as in Eq. (10), i.e., H(mY |a) =
∑

a∈2ΩY (−1)|a|QmY |a(a) log2(QmY |a(a)).
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The following theorem says vacuous extension of a BPA does not change its
entropy.3

Theorem 1. If m is a BPA for X with ΩX = {x, x̄}, and m′ is a vacuous
extension of m to (X,Y ), where ΩY = {y, ȳ}, then H(m′) = H(m).

Definition 4. Suppose mX is a BPA for X such that mX(x) > 0. Let mx,Y

denote a BPA for (X,Y ) representing a conditional BPA of Y given X = x. We
define entropy of conditional BPA mx,Y as follows:

H(mx,Y ) =
∑

a∈2ΩX,Y

(−1)|a|Q
m

↑{X,Y }
X

(a)Qmx,Y (a) log2(Qmx,Y (a)). (11)

The definition in Eq. (11) is analogous to Eq. (2) for the probabilistic case.
We have the following result about conditional entropy.

Theorem 2. Suppose mX is a BPA for X such that ΩX = {x, x̄} and
mX({x}) > 0. Suppose Y is such that ΩY = {y, ȳ}, and mY |x is a BPA for
Y given X = x. Let mx,Y denote a conditional BPA for (X,Y ) obtained from
mY |x by conditional embedding. Then,

H(mx,Y ) = mX({x})H(mY |x). (12)

If ΩX = {x, x̄} and assuming mX(x̄) > 0, it follows from Eq. (11) that

H(mx̄,Y ) =
∑

a∈2ΩX,Y

(−1)|a|Q
m

↑{X,Y }
X

(a)Qmx̄,Y (a) log2(Qmx̄,Y (a)).

Also, from Theorem 2, it follows that:

H(mx̄,Y ) = mX({x̄})H(mY |x̄).

As the contexts in mx,Y and mx̄,Y are disjoint, and the beliefs of the contexts
are described by the same BPA mX such that mX(x) > 0 and mX(x̄) > 0, we
have the following result.

Theorem 3. Suppose X and Y are such that ΩX = {x, x̄}, and ΩY = {y, ȳ}.
Suppose that we have non-vacuous conditional BPAs mY |x, and mY |x̄ for Y
such that mX({x}) > 0, mX({x̄}) > 0, and after conditional embedding, these
are represented by conditional BPAs mx,Y and mx̄,Y for (X,Y ). Then,

H(mY |X) = H(mx,Y ⊕mx̄,Y ) = H(mx,Y ) +H(mx̄,Y ). (13)

Notice that the result in Eq. (13) is analogous of the definition of conditional
entropy in Eq. (2) in the probabilistic case.

3 For lack of space, proofs of all theorems and properties are omitted, and can be
found in a working paper that can be downloaded from http://pshenoy.faculty.

ku.edu/Papers/WP334.pdf

http://pshenoy.faculty.ku.edu/Papers/WP334.pdf
http://pshenoy.faculty.ku.edu/Papers/WP334.pdf
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Next, we state the main result of this paper.

Theorem 4. Suppose X and Y are such that ΩX = {x, x̄}, and ΩY = {y, ȳ}.
Suppose mX is a BPA for X such that mX > 0 and mX(x̄) > 0, and mY |X =
mx,Y ⊕ mx̄,Y is a conditional BPA for Y given X. Let mX,Y = mX ⊕ mY |X .
Then,

H(mX,Y ) = H(mX) +H(mY |X). (14)

Next, we show that a probability model for (X,Y ) can be replicated exactly
in the DS theory. Furthermore, our definition of entropy for all BPAs will coincide
with Shannon’s entropy of the corresponding probabilistic function.

Theorem 5. Suppose X and Y are such that ΩX = {x, x̄}, and ΩY = {y, ȳ}.
Suppose PX is a PMF for X such that PX(x) > 0, and PX(x̄) > 0, and PY |X is
a CPT for Y given X, i.e., PY |X(x, y) = PY |x(y), where PY |x is the conditional
PMF for Y given X = x for all (x, y) ∈ ΩX,Y . Let PX,Y = PX ⊗PY |X . Let mX

denote the Bayesian BPA corresponding to PX , let mY |x and mY |x̄ denote the
Bayesian BPAs for Y corresponding to PMFs PY |x and PY |x̄ for Y . Let mx,Y and
mx̄,Y denote the conditional BPAs for (X,Y ) obtained by conditional embedding
of mY |x and mY |x̄. Let mY |X = mx,Y ⊕ mx̄,Y , and let mX,Y = mX ⊕ mY |X .
Then, mX,Y is a Bayesian BPA for (X,Y ) corresponding to PMF PX,Y ,

H(mX,Y ) = Hs(PX,Y ), (15)

H(mX) = Hs(PX), and (16)

H(mY |X) = Hs(PY |X). (17)

Notice that mx,Y , mx̄,Y , and mY |X , are not Bayesian BPAs.

5 Other Properties

Some further properties of our definition in Eq. (10) are as follows.
Non-negativity . Suppose m is a BPA for X and suppose |ΩX | = 2. Then,

H(m) ≥ 0. For |ΩX | > 2, H(m) does not satisfy the non-negativity property.

Example 1. Consider a BPA m for X with ΩX = {a, b, c} such that m({a, b}) =
m({a, c}) = m({b, c}) = 1

3 . Then Qm is as follows: Qm({a}) = Qm({b}) =
Qm({c}) = 2

3 , Qm({a, b}) = Qm({a, c}) = Qm({b, c}) = 1
3 , and Qm({a, b, c}) =

0. Then, H(m) = −3 · 2
3 log2( 2

3 ) + 3 · 1
3 log2( 1

3 ) = log2( 3
4 ) ≈ −0.415. ut

We conjecture that H(m) ≥ log2( n
2(n−1) ), where n = |ΩX |. This is based

on a BPA where each of
(
n
2

)
doubleton subsets has a mass of 1/

(
n
2

)
. If the

conjecture is true, H(m) would be on the scale from [log2( n
2(n−1) ), log2(n)].

limn→∞ log2( n
2(n−1) ) = −1. Lack of non-negativity is not a serious drawback.

Shannon’s definition of entropy for continuous random variables characterized
by probability density functions can be negative [6].
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Quasi-consonant . Suppose m is a BPA for X. If m is quasi-consonant,
then H(m) = 0. As consonant BPAs are also quasi-consonant, H(m) = 0 for
consonant BPAs. This property suggests that H(m) is a measure of “dissonance”
in m.

Maximum entropy . Suppose m is a BPA for X with state space ΩX .
Then, H(m) ≤ log2(|ΩX |), with equality if and only if m = mu, where mu is the
Bayesian equiprobable BPA for X. This is similar to the corresponding property
of Shannon’s definition for PMFs.

6 Summary & Conclusion

The most important property of our definition of entropy is the compound dis-
tributions property. Such a property is not satisfied by any of the past definitions
of entropy reviewed in [3], nor by the definition proposed there. The compound
distributions property is fundamental to Shannon’s definition of entropy as it
constitutes the main property that characterizes Shannon’s definition.

We should also note that the compound distributions property only applies
to belief functions that are constructed from marginals and conditional belief
functions. Given an arbitrary joint belief function, it is not always possible to
factor it into marginals and conditionals that produce the given joint. Thus, our
new definition is of particular interest for the class of joint belief functions that do
factor into marginals and conditionals. In particular, it applies to graphical belief
functions that are constructed from directed acyclic graphs models, also known
as Bayesian networks, but whose potentials are described by belief functions [1].

This is work in progress. Although we have stated Theorems 1–5 for the case
where X and Y are binary, we believe these theorems hold more generally, and
are currently in the process of proving them.
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