Appeared in: J. Vejnarova and V. Kratochvil (eds.), Belief Functions: Theory and Applications, LNAI 9861, 2016, 1-11, Springer, Switzerland.

Entropy of Belief Functions in the
Dempster-Shafer Theory: A New Perspective

Radim Jirousek and Prakash P. Shenoy

Abstract We propose a new definition of entropy of basic probability assignments
(BPA) in the Dempster-Shafer (D-S) theory of belief functions, which is interpreted
as a measure of total uncertainty in the BPA. We state a list of five desired properties
of entropy for D-S belief functions theory that are motivated by Shannon’s definition
of entropy of probability functions, together with the implicit requirement that any
definition should be consistent with semantics of D-S belief functions theory. Three
of our five desired properties are different from the five properties described by Klir
and Wierman. We demonstrate that our definition satisfies all five properties in our
list, and is consistent with semantics of D-S theory, whereas none of the existing
definitions do. Our definition does not satisfy the sub-additivity property. Whether
there exists a definition that satisfies our five properties plus sub-additivity, and that
is consistent with semantics for the D-S theory, remains an open question.

1 Introduction

The main goal of this paper is to provide a new definition of entropy of belief func-
tions in the D-S theory that is consistent with semantics of the D-S theory. By en-
tropy, we mean a real-valued measure of uncertainty in the tradition of Hartley [12]
and Shannon [30]. Also, while there are several theories of belief functions (see,
e.g., [10, 36]), our goal is to define entropy for the D-S theory that uses Dempster’s
product-intersection rule [6] as the combination rule.
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Hartley’s Entropy Suppose X is a discrete random variable with a finite state
space Qy, whose elements are assumed to be mutually exclusive and exhaustive.
Suppose this is all we know about X, i.e., we do not know the probability mass
function (PMF) of X. What is a measure of uncertainty? Hartley [12] defines entropy
of Qx as follows:

U(Qx) = logy (|2 1), (1

where U(Qx) denotes a real-valued measure of uncertainty of Qx, with units of
bits. First, notice that U () does not depend on the labels attached to the states in
Qy, only on the number of states in Qx. Second, Rényi [26] shows that Hartley’s
definition in Eq. (1) is characterized by the following three properties.

1. (Additivity) Suppose X and Y are random variables with finite state spaces Qyx
and Qy, respectively. The joint state space of (X,Y) is Qx x Qy. Then, U (Qyx X
.Qy) = U(.Qx) JrU(.Qy).

2. (Monotonicity) If |Qx,| > |Qx, |, then U (Qx,) > U(Lx, ).

3. (Units) If |Qx| =2, then U(Qx) = 1 bit.

Shannon’s Entropy Now suppose we learn of a probability mass function Py
of X. What is the information content of Px? Or alternatively, we can ask: What is
the uncertainty in Py? Shannon [30] provides an answer to the second question as
follows:

1
H(Px) = Px (x)log, (> ; (2
X A
where H,(Px) is called Shannon’s measure of entropy (uncertainty) in PMF Py.

Shannon’s entropy is characterized (up to a constant) by the following two properties
[30].

1. (Monotonicity) If Py is an equally likely PMF, then Hy(Py) is a monotonically
increasing function of |Qy]|.

2. (Compound distributions) If a PMF Py y is factored into two PMFs Py y (x,y) =
Py (x) PY\x(y)’ then HS(PX,Y) = Hy(Px) +erﬂx Py (x) HS(PY|x)'

The uncertainty prior to learning Py was U(Qyx). After learning Py, it is now
H(Px). Thus, if I(Px) denotes information content of Py, then we have the equality

I(Px)+H(Px) = U(2x). 3)

The maximum value of H(Py) (over the space of all PMFs for X) is log, (| Qx|),
which is attained by the uniform PMF for X, Py (x) = 1/|Qx]| for all x € Qx. Thus,
I(Px) > 0, with equality if and only if Py is the uniform PMF. At the other extreme,
H,(Px) > 0, with equality if and only if there exists x € Qx such that Py (x) = 1.
Such a PMF has no uncertainty, and therefore, it must have maximum information.
Thus I(Px) < U(Qx), with equality if and only if there exists x € Qx such that
PX ()C) =1.
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Entropy for the D-S Theory In the case of D-S theory of belief functions, if m
is a basic probability assignment (BPA) for X, let H(m) denote the entropy of BPA
m. First, the D-S theory is a generalization of probability theory. The equiprobable
PMF is represented by a Bayesian uniform basic probability assignment (BPA) m,,
for X such that m, ({x}) = 1/|Qx| for all x € Qx. So to be consistent with proba-
bility theory, we should have H(m,) = log,(|Qx|). However, such a BPA, m,, for
X, does not have the maximum uncertainty. The vacuous BPA 1y for X such that
1x (2x) = 1 has more uncertainty than the equiprobable Bayesian m,,. As we cannot
imagine a BPA for X that has more uncertainty than 1y, we assume that H(1x) has
the maximum uncertainty. Klir [16] and others argue that a measure of uncertainty
can capture a measure of conflict as well as a measure of non-specificity. Assum-
ing that each of these two measures is scaled so that they are each measured on a
scale [0,log, (]2x]|)], then, H(1x) = 2log,(|2x|). Like in probability theory, we can
define a measure of information content of BPA m for X so that the following holds:

I(m) + H(m) = 2log, (|Qx]), @)

where I(m) denotes the information content of BPA m for X. Thus, for the vacuous
BPA 1y for X, we have I(1x) = 0, whereas for the Bayesian uniform BPA m,, for X,
we have I(m,) = log,(|Q2x]).

In this paper, we are interested in defining a measure of entropy (uncertainty)
of BPAs m for X in the D-S theory of belief functions on the scale 0 < H(m) <
2log, (|€2x|), so that H(m) < 2log,(]Qx|) with equality if and only if m = 1x, and
H(m) > 0, with equality if and only if m is such that m({x}) = 1 for some x €
Qx. Also, we require a monotonicity property, a probability consistency property,
an additivity property, and a requirement that any definition should be based on
semantics consistent with D-S theory. These are discussed in detail in Section 2.

Literature Review There is a rich literature on information theoretic measures
for the D-S theory of belief functions. Some, e.g., [13, 32, 38, 23], define the in-
formation content of BPA m so that I(1y) = 0. Some define entropy on the scale
[0,10g,(]2x|)] so that they define entropy only as a measure of conflict (e.g., [35]),
or only as a measure of non-specificity [8]. Some, e.g., [21, 18, 17, 24, 11, 37,
15, 25] define entropy as a measure of conflict and non-specificity, but on a scale
[0,10g,(|2x|)], so that H(m,) = H(1x) = log,(|2x|). Some, e.g., [22, 3, 1] define
entropy as a measure of conflict and non-specificity on the scale [0,210g,(]2x])],
but they do so using semantics of belief functions (credal sets of PMFs) that are in-
consistent with Dempster’s rule of combination [29, 10]. Our definition is the only
one that defines entropy as a measure of conflict and non-specificity, on the scale
[0,210g, (]2x )], using semantics of belief functions that are consistent with Demp-
ster’s combination rule.
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2 Desired Properties of Entropy of BPAs in the D-S Theory

First, we explain our informal requirement that any definition of entropy for D-S
theory should be consistent with the semantics of this theory. Next, we propose five
formal properties that a definition of entropy of BPAs in the D-S theory should sat-
isfy, Finally, we compare these properties with those proposed by Klir and Wierman
[19] for the same purposes.

Consistency with D-S Theory Semantics Requirement First, let us stress once
more that we are concerned in this paper only with the D-S belief functions theory
that includes Dempster’s combination rule as the operation for aggregating knowl-
edge. There are theories of belief functions that use other combination rules. Let
29 denote the set of all non-empty subsets of Qx. A BPA m for X can be consid-
ered as an encoding of a collection of PMFs £2,, for X such that for all a € 2% we
have:

Bel,(a) = m(b) = min P(x). (5)
(a) bezﬂgfbga (b) = m %xé (x)

P is referred to as a credal set corresponding to m in the imprecise probability
literature (see, e.g., [36]). For such a theory of belief functions, Fagin and Halpern
[9] propose a combination rule that is different from Dempster’s combination rule.
Thus, a BPA m in the D-S theory cannot be interpreted as a collection of PMFs
satisfying Eq. (5) [28, 10]. There are, of course, semantics that are consistent with D-
S theory, such as multivalued mappings [6], random codes [28], transferable beliefs
[34], and hints [20].

Example 1. Consider a BPA m for X with state space Qx = {x1,x2,x3} as follows:
mi({x1}) = 0.5, m;(Q2x) = 0.5. With the credal set semantics of a BPA function,
m; corresponds to a set of PMFs &, = {P € & : P(x;) > 0.5}, where % denotes
the set of all PMFs for X. Now suppose we get a distinct piece of evidence m;
for X such that my({x»}) = 0.5, my(2x) = 0.5. my corresponds to &,,, = {P €
& : P(x2) > 0.5}. The only PMF that is in both &2, and &, is P € & such
that P(x1) = P(xp) = 0.5, and P(x3) = 0. Notice that if we use Dempster’s rule to
combine m; and my, we have: (my &my)({x1}) = %, (m; ®@my)({x2}) = 1, and
(m) ©m>)(L2x) = 1. The set of PMFs 2, e, = {P € & : P(x1) > 1,P(x,) > 1}
is not the same as &, N Py,. Thus, credal set semantics of belief functions are not
compatible with Dempster’s rule of combination.

Second, given a BPA m for X in the D-S theory, there are many ways to transform
m to a corresponding PMF P, for X [5]. However, only one of these ways, called
the plausibility transform [4], is consistent with m in the D-S theory in the sense that
P, ® Py, = Py om,, where ® is the combination rule in probability theory [31], and
@ is Dempster’s combination rule in D-S theory [4]. [15, 7, 25] define entropy of m
as the Shannon’s entropy of the pignistic transform of m. The pignistic transform of
m is not compatible with Dempster’s combination rule [4], and therefore, this defi-
nition is not consistent with D-S theory semantics. Thus, as per our consistency with
D-S theory semantics requirement, any method for defining entropy of m in the D-S
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theory by first transforming m to a corresponding PMF should use the plausibility
transform method. Notice that we are not claiming that a definition of entropy for
D-S theory must use the plausibility transform method, only that if one takes the
path of first transforming a BPA m to an equivalent PMF and then using Shannon’s
entropy of the PMF as the definition of entropy of m, then to be compatible with D-S
theory semantics, the transformation method used must be the plausibility transform
method.

Example 2. Consider a situation where we have vacuous prior knowledge of X
with Qx = {x,...,x70} and we receive evidence represented as BPA m for X as
follows: m({x1}) = 0.30, m({x2}) = 0.01, and m({x2,...,x70}) = 0.69. The pig-
nistic transform of m [33], denoted by BetP,, is as follows: BetP,(x;) = 0.30,
BetP,,(x2) = 0.02, and BetP,,(x3) = ... = BetP,,(x70) = 0.01. Thus, as per the pig-
nistic transform, BPA m is interpreted as evidence where x; is 15 times more likely
than x,. Now suppose we receive another distinct piece of evidence that is also rep-
resented by m. As per the D-S theory, our total evidence is now m @ m. If on the basis
of m (or BetP,,), x; was 15 times more likely than x,, then now that we have evidence
m@®m, x| should be 15% = 225 times more likely than x;. But Bet Py, (x1) ~ 0.156
and BetPyam(x2) = 0.036. So according to BetPygm, x| is only 4.33 more likely
than x,. Thus, BetP,, is not consistent with Dempster’s combination rule.

Thus, one requirement we implicitly assume is that any definition of entropy of
m should be based on semantics for m that are consistent with the basis tenets of
D-S theory. Also, we implicitly assume existence and continuity—given a BPA m,
H(m) should always exist, and H(m) should be a continuous function of m. We do
not list these three requirements explicitly.

Desired Properties of Entropy for the D-S Theory The following list of de-
sired properties of entropy H (my ), where my is a BPA for X, is motivated by the
properties of Shannon’s entropy of PMFs [30].

Let X and Y denote random variables with state spaces 2x and Qy, respectively.
Let my and my denote distinct BPAs for X and Y, respectively. Let 1y and 1y denote
the vacuous BPAs for X and Y, respectively.

1. (Non-negativity) H(my) > 0, with equality if and only if there is a x € Qx such
that my ({x}) = L. This is similar to the probabilistic case.

2. (Maximum entropy) H(my) < H(1x), with equality if and only if my = 1x. This
makes sense as the vacuous BPA 1x for X has the most uncertainty among all
BPAs for X. Such a property is advocated in [3].

3. (Monotonicity) If | Qx| < |Qy|, then H(1x) < H(1y). A similar property is used
by Shannon to characterize his definition of entropy of PMFs.

4. (Probability consistency) If my is a Bayesian BPA for X, then H (my) = Hy(Px),
where Py is the PMF of X corresponding to my.

5. (Additivity) H(myx ®my) = H(myx) + H(my). This is a weaker form of the com-
pound property of Shannon’s entropy of a PMF.

Klir and Wierman [19] also describe a set of properties that they believe should
be satisfied by any meaningful measure of uncertainty based on intuitive grounds.
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Two of the properties that they suggest, probability consistency and additivity, are
also included in the above list. Our maximum entropy property is not in their list.
Two of the properties that they require do not make intuitive sense to us.

First, Klir and Wierman require a property they call “set consistency” as follows:
H(m) = log,(|a]) whenever m is deterministic (i.e., it has only one focal element)
with focal set a. This property would require that H(1x) = log,(|2x|). The proba-
bility consistency property requires that for the Bayesian uniform BPA m,,, H(m,,) =
log, (]2x|). Thus, these two requirements entail that H(1x ) = H(m,) = log, (| Q2x]).
We disagree, as there is greater uncertainty in 1x than in m,,.

Second, Klir and Wierman require a property they call “range” as follows: For
any BPA my for X, 0 < H(my) < log,(|€x|). The probability consistency property
requires that H(m,) = log,(|Rx|). Also including the range property prevents from
having H(1x) > H(m,). So we do not include it in our list.

Finally, Klir and Wierman require a sub-additivity property defined as follows.
Suppose m is a BPA for {X,Y}, with marginal BPAs m*X for X, and m*" for Y.
Then,

H(m) < H(m") +H(m"Y) (6)

We agree that this property is important, and the only reason we do not include it
in our list is because we are unable to meet this requirement in addition to the five
requirements that we do include, and our implicit requirement that any definition be
consistent with the semantics of D-S theory of belief functions.

The most important property that characterizes Shannon’s definition of entropy
is the compound property Hy(Pxy) = H(Px ® PY‘X) = H,(Px) +H;~(Py\x), where
Hy(Py|x) = Yreoy Px(x) Hs(Py|;). This translated to the D-S theory of belief func-
tion would require factorizing a BPA m for {X,Y} into BPA m*X for X, and BPA
myx for {X,Y} such that m = m*X @ my|x. This cannot be done for all BPA m for
{X,Y} [31]. But, we could construct m for {X,Y } such that m = mx & myx, where
my is a BPA for X, and myy is a BPA for {X,Y} such that mﬁfx = 1y, and my
and my|x are non-conflicting, i.e., the normalization constant in Dempster’s com-
bination rule is 1. Notice that such a constructive BPA m would have the property
mX = (my ® my,| +)¥X = my. For such constructive BPAs m, we could require a
compound property as follows:

H(mX @my‘x):H(mX)‘i‘H(my‘x) (7)

However, we are unable to formulate a definition of H(m) to satisfy such a com-
pound property. So like the sub-additivity property, we do not include a compound
property in our list of properties. The additivity property included in Klir-Wierman’s
and our list is so weak that it is satisfied by any definition on a log scale. All defini-
tions of entropy of belief functions in the literature are defined on a log scale, and,
thus, they all satisfy the additivity property.
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3 A New Definition of Entropy of BPAs in the D-S Theory

In this section, we propose a new definition of entropy of BPAs in the D-S the-
ory. The new definition of entropy is based on the plausibility transform of a belief
function to an equivalent probability function. Therefore, we start this section by
describing the plausibility transform introduced originally in [4].

Plausibility Transform of a BPA to a PMF Suppose m is a BPA for X. What
is the PMF of X that best represents m in the D-S theory? An answer to this ques-
tion is given by Cobb and Shenoy [4], who propose the plausibility transform of
m as follows. First consider the plausibility function P, corresponding to m. Next,
construct a PMF for X, denoted by Pp;,,, by the values of Pl, for singleton subsets
suitably normalized, i.e.,

Ppy,(x) =K " Ply({x}) =K' Qu({x}) (8)

for all x € Qx, where K is a normalization constant that ensures Pp;, is a PMF, i.e.,
K =Y cay Pln({x}) = Licay On({x}).

[4] argues that of the many methods for transforming belief functions to PMFs,
the plausibility transform is one that is consistent with Dempster’s rule of com-
bination in the sense that if we have BPAs my,...,m; for X, then Ppy,, . ., =
Ppi,, ©...® Pp,, , where © denotes pointwise multiplication followed by normal-
ization (i.e., Bayesian combination [31]). It can be shown that the plausibility trans-
form is the only method that has this property, which follows from the fact that
Dempster’s rule of combination is pointwise multiplication of commonality func-
tions followed by normalization [27].

Example 3. Consider a BPA m for X as described in Example 2. Then, Pl,, for
singleton subsets is as follows: Pl,({x;}) = 0.30, Pl,({x2}) = 0.70, PL,,({x3}) =

-+ = Ply({x70}) = 0.69. The plausibility transform of m is as follows: Pp;, (x1) =
0.3/49.72 ~ 0.0063, and Pp;, (x2) = 0.7/49.72 ~ 0.0.0146, and Pp;, (x3) = --- =
Ppy, (x70) =~ 0.0144. Notice that Pp;, is quite different from BetP,,. In BetP,,, x| is
15 times more likely than x,. In Pp;,,, x; is 2.33 times more likely than x;. Now con-
sider the scenario where we get a distinct piece of evidence that is identical to m, so
that our total evidence is m ®m. If we compute m®m and Ppy,,., , then as per Ppy,,.,.»
x2 is 2.33% more likely than x;. This is a direct consequence of the consistency of
the plausibility transform with Dempster’s combination rule.

A New Definition of Entropy of a BPA Suppose m is a BPA for X. The entropy
of m is defined as follows:

Him)= Y Poy(x )logz( )+ Y m@bg(a).  ©

x€Qy ae2x

The first component is Shannon’s entropy of Pp;, , and the second component is
generalized Hartley’s entropy of m [8]. Like some of the definitions in the literature,
the first component in Eq. (9) is designed to measure conflict in m, and the second
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component is designed to measure non-specificity in m. Both components are on the
scale [0,1log,(]2x])], and therefore, H (m) is on the scale [0,210g, (] 2x])].

Theorem 1. The entropy H(m) of BPA m for X defined in Eq. (9) satisfies the non-
negativity, maximum entropy, monotonicity, probability consistency, and additivity
properties. It is also consistent with semantics of the D-S theory.

A proof of this theorem can be found in [14] (that can be downloaded from
(http://pshenoy.faculty.ku.edu/Papers/Wp330.pdf)). Finally, we provide
an example that shows our definition does not satisfy the sub-additivity property.

Example 4. Consider a BPA m for binary-valued variables {X,Y}: m({(x,y)}) =
m({(x,9)}) = 0.1, m({(£,y)}) = m({(£,9)}) = 0.3, m(Qx y}) = 0.2. Tt is easy to
verify that H(m) = 2.35. The marginal BPA m!*X is as follows: m*X ({x}) = 0.2,
m*X ({x}) = 0.6, and m*X (Qx) = 0.2. It is easy to verify that H(m"X) = 1.12. Sim-
ilarly, the marginal BPA m*" is as follows: m*' ({y}) = 0.4, m* ({7}) = 0.4, and
mW (Qy) = 0.2. It is easy to verify that H(m") = 1.20. Thus, H(m) = 2.35 >
H(m™)+H(m") =1.1241.20 = 2.32.

The only definition that satisfies the five properties we state plus the sub-
additivity property is that due to Maeda and Ichihashi [22], but this definition is
based on credal set semantics of a belief function that is inconsistent with Demp-
ster’s combination rule. Whether there exists a definition that satisfies our five prop-
erties plus sub-additivity, and that is based on semantics consistent with the basic
tenets of D-S theory, remains an open question.

4 Summary and Conclusions

Interpreting Shannon’s entropy of a PMF of a discrete random variable as the
amount of uncertainty in the PMF [30], we propose five desirable properties of en-
tropy of a basic probability assignment in the D-S theory of belief functions. These
five properties are motivated by the analogous properties of Shannon’s entropy of
PMFs, and they are based on our intuition that a vacuous belief function has more
uncertainty than an equiprobable Bayesian belief function. Also, besides the five
properties, we also require that any definition should be based on semantics consis-
tent with the D-S theory of belief functions (with Dempster’s rule as the combina-
tion rule), H(m) should always exist, and H(m) should be a continuous function of
m. Thus, a monotonicity-like property suggested by Abellan-Masegosa [2], based
on credal set semantics of belief functions that are not compatible with Dempster’s
rule, is not included in our set of requirements.

It would be ideal if we can state the consistency with D-S theory semantics as
a formal requirement, but we are unable to do so. In our opinion, the additivity
property for the case of two distinct BPAs for disjoint sets of variables does not
fully capture consistency with D-S theory semantics. In any case, the definitions of
entropy based on credal sets of probability distributions and pignistic transforms are
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not consistent with Dempster’s combination rule, and therefore, in our perspective,
not appropriate for the D-S theory of evidence.

As first suggested by Lamata and Moral [21], we propose a new definition of
entropy of BPA as a combination of Shannon’s entropy of an equivalent PMF that
captures the conflict measure of entropy, and Dubois-Prade’s entropy of a BPA that
captures the non-specificity (or generalized Hartley) measure of entropy. The equiv-
alent PMF is that obtained by using the plausibility transform [4]. This new def-
inition satisfies all five properties we propose. More importantly, our definition is
consistent with the semantics for the D-S theory of belief functions.

An open question is whether there exists a definition of entropy of BPA m in the
D-S theory that satisfies the five properties we list in Section 2, the sub-additivity
property, and most importantly, that is consistent with semantics for the D-S theory.
Our definition satisfies the five properties and is consistent with semantics for the
D-S theory, but it does not satisfy the sub-additivity property.
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