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Abstract. This paper shows that Pearl’s causal networks can be de-
scribed using compositional models in the valuation-based systems (VBS)
framework. There are several advantages of using the VBS framework.
First, VBS is a generalization of several uncertainty theories (e.g., prob-
ability theory, a version of possibility theory where combination is the
product t-norm, Spohn’s epistemic belief theory, and Dempster-Shafer
belief function theory). This implies that causal compositional models,
initially described in probability theory, are now described in all uncer-
tainty calculi that fit in the VBS framework. Second, using the operators
of VBS, we describe how causal inference can be made in causal compo-
sitional models in an elegant and unifying algebraic way. This includes
the computation of conditioning, and the computation of the effect of
interventions.

Keywords: Valuation-based system, causality, conditionals, interven-
tion, compositional model.

1 Introduction

In many situations we are faced with the question of what will happen if we
make some changes, such as if we intervene by an action that changes the status
quo. In [5], Pearl shows that such questions can be answered using causal prob-
abilistic models because of their ability to represent and respond to external or
spontaneous changes. In [3], causal probabilistic models were described by causal
compositional models in the probabilistic framework. In this paper we show that
such causal compositional models can be described in the valuation-based sys-
tems (VBS) framework [7], so that they apply to all uncertainty calculi that fit
in the VBS framework.

An outline of the paper is as follows. Section 2 reviews the VBS framework.
Section 3 reviews the composition operator and its basic properties in the VBS
framework. Section 4 describes causal compositional models in the VBS frame-
work, and making inferences in such models. We distinguish between condition-
ing and the effect of interventions. We also describe a small illustrative example.
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2 Valuation-Based Systems

We use notation from [7] and [4] that have a detailed introduction to VBS and
to compositional models in VBS. Φ denotes a set whose elements are called
variables that are denoted by upper-case Roman alphabets (e.g., X , Y , and Z).
Subsets of Φ are denoted by lower-case Roman alphabets (e.g., r, s, and t). Ψ
denotes a set whose elements are called valuations. Elements of Ψ are denoted
by lower-case Greek alphabets (e.g., ρ, σ, and τ). Each valuation is associated
with a subset of variables, and represents some knowledge about the variables
in the subset. Thus, we say that ρ is a valuation for r, where r ⊆ Φ is the subset
associated with ρ.

It is useful to identify a subset of valuations Ψn ⊂ Ψ , whose elements are
called normal. Normal valuations are those that are coherent in some sense. For
example, in D-S belief function theory, normal valuations are basic probability
assignment potentials whose values for non-empty subsets add to one.

We describe a specific VBS model by a pair (ΦS , ΨS). This pair must be
consistent in the sense that for each X ∈ ΦS there exists a valuation ρ ∈ ΨS for
r such that X ∈ r, and that each valuation ρ ∈ ΨS must be for variables r ⊆ ΦS .
The VBS framework includes three operators — combination, marginalization,
and removal — that are used to make inferences from the knowledge encoded
in a VBS.

Combination. The combination operator ⊕ : Ψ × Ψ → Ψn represents aggrega-
tion of knowledge. It satisfies the following three axioms:

1. (Domain) If ρ is a valuation for r, and σ is a valuation for s, then ρ⊕ σ is
a normal valuation for r ∪ s.

2. (Commutativity) ρ⊕ σ = σ ⊕ ρ.
3. (Associativity) ρ⊕ (σ ⊕ τ) = (ρ⊕ σ)⊕ τ .

Marginalization. The marginalization operator −X : Ψ → Ψ allows us to
coarsen knowledge by marginalizing X out of the domain of a valuation. It
satisfies the following four axioms:

1. (Domain) If ρ is a valuation for r, and X ∈ r, then ρ−X is a valuation for
r \ {X}.

2. (Normal) ρ−X is normal if and only if ρ is normal.
3. (Order does not matter) If ρ is a valuation for r, X ∈ r, and Y ∈ r, then

(ρ−X)−Y = (ρ−Y )−X , which is denoted by ρ−{X,Y }.
4. (Local computation) If ρ and σ are valuations for r and s, respectively,X ∈ r,

and X /∈ s, then (ρ⊕ σ)−X = (ρ−X)⊕ σ.

Sometimes it is useful to use the notation ρ↓r\{X,Y } to denote ρ−{X,Y }, when
we wish to emphasize the variables that remain (instead of the variables that
are marginalized out).

The set of all normal valuations with the combination operator ⊕ forms a
commutative semigroup. We let ι∅ denote the (unique) identity valuation of this
semigroup. Thus, for any normal valuation ρ, ρ⊕ ι∅ = ρ.
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The set of all normal valuations for s ⊆ Φ with the combination operator
⊕ also forms a commutative semigroup (which is different from the semigroup
discussed in the previous paragraph). Let ιs denote the (unique) identity for this
semigroup. Thus, for any normal valuation σ for s, σ ⊕ ιs = σ.

Notice that, in general, ρ⊕ ρ �= ρ. Thus, it is important to ensure that we do
not double count knowledge when it matters. This can be ensured, e.g., when
defining the composition operator in Section 3, by the removal operator that is
defined next.

Removal. This operator 	 : Ψ×Ψn → Ψn represents removing knowledge in the
second valuation from the knowledge in the first valuation. It must satisfy the
following three axioms:

1. (Domain): Suppose σ is a valuation for s and ρ is a normal valuation for r.
Then σ 	 ρ is a normal valuation for r ∪ s.

2. (Identity): For each normal valuation ρ for r, ρ⊕ ρ	 ρ = ρ. Thus, ρ	 ρ acts
as an identity for ρ, and we denote ρ	 ρ by ιρ. Thus, ρ⊕ ιρ = ρ.

3. (Combination and Removal): Suppose π and θ are valuations, and suppose
ρ is a normal valuation. Then, (π ⊕ θ)	 ρ = π ⊕ (θ 	 ρ).

We call σ 	 ρ the valuation resulting after removing ρ from σ. The identity
axiom defines the removal operator as an inverse of the combination operator.

In [7], a number of properties of combination, marginalization, and removal
operators are stated and proved. For example, for valuations σ and θ for s and
t, respectively, a normal valuation ρ for r, and X ∈ s \ r it holds that

1. (σ ⊕ θ)	 ρ = (σ 	 ρ)⊕ θ.
2. (σ 	 ρ)−X = σ−X 	 ρ.

Domination. As defined in the identity property of removal, ρ ⊕ ιρ = ρ. In
general, if ρ′ is a normal valuation for r that is distinct from ρ, then ρ′ ⊕ ιρ
may not equal ρ′. However, there may exist a class of normal valuations for
r such that if ρ′ is in this class, then ρ′ ⊕ ιρ = ρ′. We will call this class of
normal valuations as valuations that are dominated by ρ. Thus, if ρ dominates
ρ′, written as ρ 
 ρ′, then ρ′ ⊕ ιρ = ρ′.

3 Composition Operator

The composition operator aggregates knowledge encoded in two normal valua-
tions while adjusting for the double counting of knowledge when it does matter.
Suppose ρ and σ are normal valuations for r and s, respectively, and suppose
that σ↓r∩s 
 ρ↓r∩s. The composition of ρ and σ, written as ρ � σ, is defined as
follows:

ρ � σ = ρ⊕ σ 	 σ↓r∩s. (1)

The following theorem summarizes the most important properties of the com-
position operator.
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Theorem 1. Suppose ρ, σ and τ are normal valuations for r, s, and t, re-
spectively, and suppose that σ↓r∩s 
 ρ↓r∩s, τ↓(r∪s)∩t 
 (ρ � σ)↓(r∪s)∩t and
τ↓r∩t 
 ρ↓r∩t. Then the following statements hold:

1. (Domain): ρ � σ is a normal valuation for r ∪ s.
2. (Composition preserves first marginal): (ρ � σ)↓r = ρ.
3. (Reduction:) If s ⊆ r then, ρ � σ = ρ.
4. (Non-commutativity): In general, ρ � σ �= σ � ρ.
5. (Commutativity under consistency): If ρ and σ have a common marginal for

r ∩ s, i.e., ρ↓r∩s = σ↓r∩s, then ρ � σ = σ � ρ.
6. (Non-associativity): Suppose τ is a normal valuation for t, and suppose

τ↓(r∪s)∩t 
 (ρ � σ)↓(r∪s)∩t. Then, in general, (ρ � σ) � τ �= ρ � (σ � τ).
7. (Associativity under special condition I): If r ⊃ (s ∩ t) then, (ρ � σ) � τ =

ρ � (σ � τ).
8. (Associativity under special condition II): If s ⊃ (r∩ t) then, (ρ � σ) � τ =

ρ � (σ � τ).
9. (Stepwise composition): If (r ∩ s) ⊆ t ⊆ s then, (ρ � σ↓t) � σ = ρ � σ.
10. (Exchangeability): If r ⊃ (s ∩ t) then, (ρ � σ) � τ = (ρ � τ) � σ.
11. (Simple marginalization): If (r ∩ s) ⊆ t ⊆ r ∪ s then, (ρ � σ)↓t = ρ↓r∩t �

σ↓s∩t.
12. (Irrelevant combination): If t ⊆ r \ s then, ρ � (σ ⊕ τ) = ρ � σ.

Proof. All properties are proved in [4] with the exception of Properties 3, 7 and
12.

Property 3 is a direct consequence of Property 2. To prove Property 7, it is
sufficient to use the definition of the composition operator (Equation 1), simple
marginalization (Property 11), the commutativity and associativity of combina-
tion, and the fact that under the specified condition (r ∪ s) ∩ t = r ∩ t:

ρ � (σ � τ) = ρ⊕ (σ � τ) 	 (σ � τ)↓r∩(s∪t)

= ρ⊕ σ ⊕ τ 	 τ↓s∩t 	 (σ � τ)↓r∩(s∪t)

= ρ⊕ σ ⊕ τ 	 τ↓s∩t 	 (σ↓r∩s � τ↓r∩t)⊕ σ↓r∩s 	 σ↓r∩s ⊕ τ↓r∩t 	 τ↓r∩t

= ρ⊕ σ ⊕ τ 	 (σ↓r∩s � τ↓r∩t)⊕ (σ↓r∩s � τ↓r∩t)	 σ↓r∩s 	 τ↓r∩t

= (ρ � σ)⊕ τ 	 τ↓(r∪s)∩t = (ρ � σ) � τ.

To prove Property 12 we use the definition of the composition operator (Equa-
tion 1), simple marginalization (Property 11), and the commutativity and asso-
ciativity of combination:

ρ � (σ ⊕ τ) = ρ⊕ (σ ⊕ τ)	 (σ ⊕ τ)↓r∩(s∪t) = ρ⊕ (σ ⊕ τ)	 (σ↓r∩s ⊕ τ)

= ρ⊕ σ↓r∩s 	 σ↓r∩s ⊕ σ ⊕ τ 	 (σ↓r∩s ⊕ τ)

= ρ⊕ σ 	 σ↓r∩s ⊕ (σ↓r∩s ⊕ τ)	 (σ↓r∩s ⊕ τ) = ρ � σ.

In designing computational procedures for probabilistic compositional models
in [1], we compensated the lack of associativity of the composition operator by
the so-called anticipating composition operator. Its name is suggestive from the
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fact that it introduces an additional conditional independence relation into the
result of composition—it anticipates the independence relation that is necessary
for associativity, and therefore it must take into account the set of variables,
for which the preceding distribution is defined. In this paper we introduce the
anticipating operator of composition for VBS in the following way. Suppose ρ
and σ are normal valuations for r and s, respectively, and suppose t is a subset
of variables. Then,

ρ ©� tσ = (ρ⊕ σ↓(t\r)∩s) � σ. (2)

Notice that, as explained above, this composition operator is parameterized by
subset t. If (t \ r)∩ s = ∅ then ρ ©� tσ = ρ � σ. The importance of this operator
stems from the following assertion.

Theorem 2. Suppose τ, ρ, and σ are normal valuations for t, r, and s, respec-
tively, and suppose that σ↓r∩s 
 ρ↓r∩s and ρ↓r∩t 
 τ↓r∩t. Then

(τ � ρ) � σ = τ � (ρ ©� tσ). (3)

Proof. The proof uses irrelevant combination (Property 12 of Theorem 1), and
associativity under special condition I (Property 7 of Theorem 1):

(τ � ρ) � σ = (τ � (ρ⊕ ι(t\r)∩s)) � σ

= τ � ((ρ⊕ ι(t\r)∩s) � σ) = τ � (ρ ©� tσ).

4 Causal Compositional Models

Suppose Φ = {X1, X2, . . . , Xn}. For each variableXi, let C(Xi) denote the subset
of the variables that are causes of Xi. We assume that Xi �∈ C(Xi). {C(Xi)}ni=1

constitutes a causal model. Using Pearl’s terminology [5], we say that a causal
model is Markovian if there exists an ordering of variables (without loss of
generality we assume that it is the orderingX1, X2, . . . , Xn) such that C(X1) = ∅,
and for i = 2, 3, . . . , n, C(Xi) ⊆ {X1, . . . , Xi−1}. Markovian causal models are
causal models without feedback relations.

Let ri denote C(Xi) ∪ {Xi}. From here onwards, the symbol τ exclusively
denotes causal models, i.e. if we have valuations ρi for ri for i = 1, . . . , n a
causal compositional model (CCM) τ is defined as follows:

τ = (. . . ((ρ1 � ρ2) � ρ3) � . . . � ρn−1) � ρn = ρ1 � ρ2 � . . . � ρn. (4)

(To increase legibility of the formulae, we will not include parentheses if the
composition operator is successively performed from left to right.)

Notice that all the properties of the composition operator, including Prop-
erty 10, describe Markovian preserving modifications. For example, if ρ1 
ρ2 
ρ3
is a Markovian CCM, then r1 ⊇ r2∩r3 guarantees that ρ1 
ρ3 
ρ2 is also Marko-
vian (it follows from the fact that under this assumption r3∩ (r1∪r2) = r3∩r1).

Readers familiar with Pearl’s causal networks [5] have certainly noticed that
for the probabilistic case, CCM τ defined by formula (4) is exactly the causal
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network represented by an acyclic directed graph G = (V,E) with V = Φ, and
there is an edge (Xj → Xi) ∈ E iff Xj ∈ C(Xi). The conditional probability
distributions necessary to define the probabilistic causal network are ρ(Xi|C(Xi))
for i = 1, . . . , n.

4.1 Conditioning and Intervention

In causal models, there is a difference between conditioning and intervention.
Suppose S = 1 denotes a person who smokes, Y = 1 denotes (nicotine-stained)
yellow teeth, and C = 1 denotes presence of lung cancer. We assume C(S) = ∅,
C(Y ) = {S}, and C(C) = {S}. Conditioning on Y = 0 means including evidence
that teeth are not stained (which lowers the chances that the person has cancer).
On the other hand, the intervention denoted by do(Y = 0) means a changed
universe where the person gets his teeth whitened (e.g., from his dentist), but
the chances of cancer remains unchanged.

To simplify the exposition, in the rest of this subsection, let s denote r1∪. . .∪rn
and t denote s \ {X} for some X ∈ s. Thus, in CCM τ = ρ1 
 ρ2 
 . . . 
 ρn,
conditioning by X = x leads to a valuation τ(t|X = x) for t.

As shown in [3], we can realize both the conditioning and intervention as a
composition of the causal compositional model ρ1
. . .
ρn with a valuation ν|X;x,
which is a valuation for variable X expressing knowledge that X = x. Using this
notation we can apply the following simple formulae that were proved for the
probabilistic framework in [3]:

τ(t|X = x) =
(
ν|X;x 
 (ρ1 
 ρ2 
 . . . 
 ρn)

)−X
, (5)

and
τ(t|do(X = x)) =

(
ν|X;x 
 ρ1 
 ρ2 
 . . . 
 ρn

)−X
. (6)

Notice the importance of the pair of brackets by which the formulae above dif-
fer from each other. This difference arises from the fact that the operator of
composition is not associative.

To clarify these formulae, consider for a moment, again, probabilistic inter-
pretation. Then, the expression in formula (5) equals

ν|X;x 
 (ρ1 
 ρ2 
 . . . 
 ρn) = ν|X;x 
 τ(s) =
ν|X;x · τ(s)

τ(X)
,

which is a probability distribution for variables s, and equals τ(t|X = x) for
those combinations of values of variables s for which X = x, and 0 for all the

remaining combinations of values. Therefore τ(t|X = x) =
(
ν|X;x 
 τ(s)

)−X
.

To explain formula (6) we have to make a reference to Pearl’s causal networks
[5], and to consider CCM

σ = ρ0 � ρ1 � ρ2 � . . . � ρn, (7)

for a one-dimensional distribution ρ0(X) (ρ0 may be considered uniform). At
the end of the preceding section we said that CCM τ defined by formula (4)
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corresponds to the causal network with an acyclic directed graph G = (Φ,E),
where (Xj → Xi) ∈ E iff Xj ∈ C(Xi). Obviously, CCM σ defined by formula (7)
corresponds to the causal network with an acyclic directed graph Ḡ = (Φ, Ē),
in which there is no edge heading to X and all the remaining edges from E are
preserved; i.e., Ē = {(Xj → Xi) ∈ E : Xi �= X}.

Following Definition 3.2.1 in [5] (or formula (3.11) from the same source), we
can see that the result of intervention performed in the causal model τ can be
computed as a conditioning in the model σ:

τ(t|do(X = x)) = σ(t|X = x) =
(
ν|X;x 
 σ(s)

)−X

=
(
ν|X;x 
 (ρ0 
 ρ1 
 . . . 
 ρn)

)−X
.

Applying Property 8 of Theorem 1 n-times (it is possible because ν|X;x and ρ0
are defined for the same variable X) we get:

ν|X;x 
 (ρ0 
 ρ1 
 . . . 
 ρn−1 
 ρn) = ν|X;x 
 (ρ0 
 ρ1 
 . . . 
 ρn−1) 
 ρn = . . .

= ν|X;x 
 ρ0 
 ρ1 
 . . . 
 ρn−1 
 ρn,

from which the formula (6) is obtained using Property 3 of Theorem 1.
Readers familiar with the Pearl’s causal networks [5] have certainly noticed an

advantage of CCM. In CCM, we can compute both conditioning and intervention
from one causal compositional model as shown above. In Pearl’s causal networks,
we have to consider two different networks. Conditioning is computed from the
complete causal network. For the computation of intervention, we have to con-
sider a reduced causal network where all the arrows heading to the intervention
variable are deleted.

4.2 An Example: Elimination of Hidden Variables

In this subsection, as an illustration, we derive formulae for computation of
conditioning and intervention in a simple causal compositional model with four
variables U, Y,X,Z, the first of which is assumed to be hidden (unobservable).
Suppose that C(U) = ∅, C(Y ) = {U}, C(X) = {Y }, C(Z) = {U,X}, so that the
causal model is Markovian. Also, suppose that the situation is described by a
causal compositional model as follows:

τ(U, Y,X,Z) = ρ1(U) 
 ρ2(U, Y ) 
 ρ3(Y,X) 
 ρ4(U,X,Z).

In the CCM above, ρ1(U) denotes a normal valuation for U , etc., and
τ(U, Y,X,Z) denotes the joint normal valuation for {U, Y,X,Z}. As U is a
hidden variable, only ρ3(Y,X) can be estimated from data, all others include
U in their domains. To simplify notation, we will let, e.g., τ(Y,X,Z) denote
τ(U, Y,X,Z)−U , etc.

Computation of the conditional τ(Z|Y = y) is simple.

τ(Z|Y = y) =
(
ν|Y ;y 
 τ(U, Y,X,Z)

)↓{Z} (11)
=

(
ν|Y ;y 
 τ(U, Y,X,Z)−{U}

)↓{Z}

(11)
=

(
ν|Y ;y 
 τ(Y,X,Z)−{X}

)↓{Z}
=

(
ν|Y ;y 
 τ(Y, Z)

)↓{Z}
.
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Thus we can estimate τ(Z|Y = y) by
(
ν|Y ;y 
 τ̂ (Y, Z)

)↓{Z}
, which includes only

observable variables. Notice that during these computations we used Property 11
of Theorem 1 twice. This is why the symbol (11) appears above the respective
equality signs. This type of explanation will also be used in the subsequent
computations.

To compute τ(Z|do(Y = y)) we use the properties of the composition and the
anticipating operators defined in the preceding section. To simplify the exposi-
tion, we do just one elementary modification at each step, and thus the following
computations may appear more cumbersome than they really are.

τ(Z|do(Y = y)) =
(
ν|Y ;y 
 ρ1(U) 
 ρ2(U, Y ) 
 ρ3(Y,X) 
 ρ4(U,X,Z)

)↓{Z}

(3)
=

(
ν|Y ;y 
 ρ1(U) 
 ρ3(Y,X) 
 ρ4(U,X,Z)

)↓{Z}

(10)
=

(
ν|Y ;y 
 ρ3(Y,X) 
 ρ1(U) 
 ρ4(U,X,Z)

)↓{Z}

Th 2
=

(
ν|Y ;y 
 ρ3(Y,X) 


(
ρ1(U) ©�{Y,X} ρ4(U,X,Z)

))↓{Z}

(11)
=

(
ν|Y ;y 
 ρ3(Y,X) 


(
ρ1(U) ©�{Y,X} ρ4(U,X,Z)

)−U
)↓{Z}

.

To express
(
ρ1(U) ©�{Y,X} ρ4(U,X,Z)

)−U

we take advantage of the idea of

extension used by Pearl in [5]. It is one way of taking into account the mutual
dependence of variables X , Y , and Z. It plays the same role as the inheritance
of parents property of Shachter’s arc reversal rule [6].

(
ρ1(U) ©�{Y,X} ρ4(U,X,Z)

)−U

=
(
ρ1(U) ©�{X} ρ4(U,X,Z)

)−U

(11)
=

((
ρ2(U, Y ) ©�{X} ρ4(U,X,Z)

)−Y
)−U

=
(
(ρ4(X)⊕ ρ2(U, Y )) 
 ρ4(U,X,Z)

)↓{X,Z}

=
(
(ρ4(X)⊕ ρ2(Y )) 
 ρ2(U, Y ) 
 ρ4(U,X,Z)

)↓{X,Z}

(3)
=

(
(ρ4(X)⊕ ρ2(Y )) 
 ρ2(U, Y ) 
 ρ3(Y,X) 
 ρ4(U,X,Z)

)↓{X,Z}

(7)
=

(
(ρ4(X)⊕ ρ2(Y )) 
 (ρ2(U, Y ) 
 ρ3(Y,X)) 
 ρ4(U,X,Z)

)↓{X,Z}

(8)
=

(
(ρ4(X)⊕ ρ2(Y )) 
 (ρ2(U, Y ) 
 ρ3(Y,X) 
 ρ4(U,X,Z))

)↓{X,Z}

=
(
(ρ4(X)⊕ ρ2(Y )) 
 τ(U, Y,X,Z)

)↓{X,Z}

(11)
=

(
(ρ4(X)⊕ ρ2(Y )) 
 τ(Y,X,Z)

)↓{X,Z}

=
(
(τ(X)⊕ τ(Y )) 
 τ(Y,X,Z)

)↓{X,Z}
=

(
τ(Y ) ©�{X}τ(Y,X,Z)

)−Y

,
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which eventually leads to

τ̂ (Z|do(Y = y))

=
(
ν|Y ;y 
 ρ3(Y,X) 


(
(ρ4(X)⊕ ρ2(Y )) 
 τ(Y,X,Z)

)↓{X,Z})↓{Z}

=
(
ν|Y ;y 
 τ̂ (Y,X) 


(
(τ̂ (X)⊕ ρ2(Y )) 
 τ̂ (Y,X,Z)

)↓{X,Z})↓{Z}

=

(
ν|Y ;y 
 τ̂ (Y,X) 


(
τ̂(Y ) ©�{X}τ̂ (Y,X,Z)

)−Y
)↓{Z}

=

(
ν|Y ;y 
 τ̂ (Y,X) 


(
τ̂(Y ) ©�{X}τ̂ (Y,X,Z)

)−Y
)↓{Z}

.

5 Conclusions

We have described causal compositional models, originally introduced in [3] in
the probabilistic framework, in the VBS framework. Both conditioning and in-
terventions can be described easily using the composition operator. A simple
example illustrates the use of the composition operator for conditioning and
intervention.
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