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Abstract Compositional models were initially described for discrete probability
theory, and later extended for possibility theory, and Dempster-Shafer (D-S) the-
ory of evidence. Valuation-based systems (VBS) can be considered as a generic un-
certainty framework that has many uncertainty calculi, such as probability theory, a
version of possibility theory where combination is the product t-norm, Spohn’s epis-
temic belief theory, and D-S belief function theory, as special cases. In this paper,
we describe compositional models for the VBS framework using the semantics of
no-double counting. We show that the compositional model defined here for belief
functions differs from the one studied by Jiroušek, Vejnarová, and Daniel. The latter
model can be described in the VBS framework, but with a combination operation
that is different from Dempster’s rule.

1 Introduction

Compositional models were initially described for discrete probability theory [4, 5].
They were later extended by Vejnarová [14] for possibility theory, and in [6] for
belief functions in the Dempster-Shafer (D-S) belief function theory. In this paper,
we use the valuation-based systems (VBS) framework [10] to extend compositional
models to all uncertainty calculi captured by the VBS framework, which includes
calculi such as probability theory, a version of possibility theory with the product
t-norm, Spohn’s epistemic belief theory, and D-S belief function theory.

We start by recalling the necessary basic notions of the VBS framework (most of
the material is taken from [10]).
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2 Radim Jiroušek and Prakash P. Shenoy

2 Valuation-Based Systems

VBS consists of two parts — a static part that is concerned with representation of
knowledge, and a dynamic part that is concerned with reasoning.

The static part consists of objects called variables and valuations. Let Φ denote a
finite set whose elements are called variables. Elements of Φ are denoted by upper-
case Roman alphabets such as X , Y , Z, etc. Subsets of Φ are denoted by lower-case
Roman alphabets such as r, s, t, etc.

Let Ψ denote a finite set whose elements are called valuations. Elements of Ψ
are denoted by lower-case Greek alphabets such as ρ , σ , τ , etc. Each valuation
is associated with a subset of variables, and represents some knowledge about the
variables in the subset. Thus, we say that ρ is a valuation for r, where r ⊆ Φ is the
subset associated with ρ .

We identify a subset of valuations Ψn ⊂ Ψ, whose elements are called normal
valuations. Normal valuations are valuations that are coherent in some sense. In D-S
belief function theory, normal valuations are basic probability assignment potentials
whose values for all non-empty subsets add to one.

The dynamic part of VBS consists of three operators — combination, marginal-
ization, and removal — that are used to make inferences from the knowledge en-
coded in a VBS. We define these operators using axioms.

Combination. The first operator is the combination operator ⊕ : Ψ×Ψ → Ψn,
which represents aggregation of knowledge. It must satisfy the following three ax-
ioms:

1. (Domain) If ρ is a valuation for r, and σ is a valuation for s, then ρ ⊕σ is a
normal valuation for r∪ s.

2. (Commutativity) ρ ⊕σ = σ ⊕ρ .
3. (Associativity) ρ ⊕ (σ ⊕ τ) = (ρ ⊕σ)⊕ τ .

The domain axiom expresses the fact that if ρ represents some knowledge about
variables in r, and σ represents some knowledge about variables in s, then ρ ⊕σ
represents the aggregated knowledge about variables in r ∪ s. The commutativity
and associativity axioms reflect the fact that the sequence in which knowledge is
aggregated makes no difference in the aggregated result.

The set of all normal valuations with the combination operator ⊕ forms a com-
mutative semigroup. We let ι /0 denote the (unique) identity valuation of this semi-
group. Thus, for any normal valuation ρ , ρ ⊕ ι /0 = ρ .

The set of all normal valuations for s ⊆ Φ with the combination operator ⊕ also
forms a commutative semigroup (which is different from the semigroup discussed
in the previous paragraph). Let ιs denote the (unique) identity for this semigroup.
Thus, for any normal valuation σ for s, σ ⊕ ιs = σ .

Notice that in general ρ ⊕ρ ̸= ρ . Thus, it is important to ensure that we do not
double count knowledge when double counting matters, i.e., it is okay to double
count knowledge ρ that is idempotent, i.e., ρ ⊕ρ = ρ . In representing our knowl-
edge as valuations in Ψ, we have to ensure that there is no double counting of non-
idempotent knowledge.
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Marginalization. Another operator is marginalization −X : Ψ → Ψ, which al-
lows us to coarsen knowledge by marginalizing X out of the domain of a valuation.
It must satisfy the following four axioms:

1. (Domain) If ρ is a valuation for r, and X ∈ r, then ρ−X is a valuation for r\{X}.
2. (Normal) ρ−X is normal if and only if ρ is normal.
3. (Order does not matter) If ρ is a valuation for r, X ∈ r, and Y ∈ r, then (ρ−X )−Y =

(ρ−Y )−X , which is denoted by ρ−{X ,Y}.
4. (Local computation) If ρ and σ are valuations for r and s, respectively, X ∈ r,

and X /∈ s, then (ρ ⊕σ)−X = (ρ−X )⊕σ .

The domain axiom is self-explanatory. Marginalization preserves normal (and
non-normal) property of valuations. The order does not matter axiom dictates that
when we coarsen knowledge by marginalizing out several variables, the order in
which the variables are marginalized does not matter in the final result. Occasionally,
we let ρ↓r\{X ,Y} denote ρ−{X ,Y}.

Removal. The removal operator ⊖ : Ψ×Ψn → Ψn represents removing knowl-
edge in the second valuation from the knowledge in the first valuation. It must satisfy
the following three axioms:

1. (Domain): Suppose σ is a valuation for s and ρ is a normal valuation for r. Then
σ ⊖ρ is a normal valuation for r∪ s.

2. (Identity): For each normal valuation ρ for r, ρ ⊕ρ ⊖ρ = ρ . Thus, ρ ⊖ρ acts as
an identity for ρ , and we denote ρ ⊖ρ by ιρ . Thus, ρ ⊕ ιρ = ρ .

3. (Combination and Removal): Suppose π and θ are valuations, and suppose ρ is
a normal valuation. Then, (π ⊕θ)⊖ρ = π ⊕ (θ ⊖ρ).

We call σ ⊖ ρ the valuation resulting after removing ρ from σ . The identity
axiom defines the removal operator as an inverse of the combination operator.

In [10], a number of properties of combination, marginalization, and removal
operators are proved. For example, suppose π,σ ,θ are valuations for p, s, and t,
respectively, ρ is a normal valuation for r, X ∈ s, and X /∈ r. Then, (π ⊕θ)⊖ρ =
(π ⊖ρ)⊕θ , and (σ ⊖ρ)−X = σ−X ⊖ρ .

3 VBS for D-S Belief Function Theory

In D-S belief function theory, we can use either basic probability assignments, or
belief functions, or plausibility functions, or commonality functions, to represent
knowledge. Here, we use only basic probability assignments.

Basic Probability Assignment. A basic probability assignment (bpa) µ for s is a
function µ : 2Ωs →R such that µ(a)≥ 0 for all a ∈ 2Ωs , and ∑{µ(a) | a ∈ 2Ωs}= 1.

B-Valuations. A b-valuation σ for s is a function σ : 2Ωs → R. We say σ is
normal if ∑{σ(a) | a ∈ 2Ωs}= 1, and we say σ is proper if σ(a)≥ 0 for all a ∈ 2Ωs .
Proper normal b-valuations represent bpa functions. Normal b-valuations that are
not proper are called pseudo-bpa .
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Set Operations. Suppose r, s, and t are sets of variables, r ⊆ s. For x ∈ Ωs, x↓r

denotes the projection of x into Ωr. Similarly, for a ∈ 2Ωs , the projection of a to r,
denoted by a↓r, is given by a↓r = {x↓r | x ∈ a}. Also, if a ⊆ Ωs, and b ⊆ Ωt , then the
join of a and b, denoted by a ◃▹ b is given by:

a ◃▹ b = {x ∈ Ωs∪t | x↓s ∈ a, x↓t ∈ b}. (1)

Combination. Suppose ρ and σ are b-valuations for r and s, respectively. Let K
denote ∑{ρ(b) ·σ(c) | b ⊆ Ωr,c ⊆ Ωs s.t.b ◃▹ c = /0}. The combination ρ ⊕σ is a
normal b-valuation for r∪ s given for all a ⊆ Ωr∪s by

(ρ ⊕σ)(a) =

{
K−1 ∑{ρ(b) ·σ(c) | b ⊆ Ωr,c ⊆ Ωs s.t.b ◃▹ c = a} if K ̸= 0
0 if K = 0.

(2)
If K ̸= 0, then K is a the normalization constant that ensures that ρ ⊕σ is a normal
b-valuation. It is evident that if ρ and σ are bpa’s (proper normal b-valuations), and
K ̸= 0, then ρ ⊕σ is a bpa. It can be shown that the definition of combination in
Equation (2) satisfies the three axioms of combination.

Marginalization. Suppose σ is a b-valuation for s, and suppose X ∈ s. The
marginal σ−X is a b-valuation for s\{X} given by

σ−X (a) = ∑{σ(b) | b ∈ 2Ωs s.t.b↓s\{X} = a} for all a ∈ 2Ωs\{X} . (3)

It can be shown that the definition of marginalization in Equation (3) satisfies the
four axioms of marginalization.

Removal. Removal is inverse of combination. It is not easy to define removal in
terms of b-valuations. For readers familiar with commonality functions, ⊕ reduces
to pointwise multiplication of commonality functions followed by normalization.
Thus, σ ⊖ρ is pointwise division of commonality functions corresponding to σ and
ρ , followed by normalization. It can be shown that this definition satisfies the three
axioms of removal.

Notice that if σ and ρ are proper b-valuations, it is possible that σ ⊖ ρ is a
pseudo-bpa. This may be true even if r ⊆ s and ρ is a marginal of σ .

Convention. For the sake of simplicity, in the rest of this paper we assume that
whenever the operator ⊕ or ⊖ is applied, then the result does not result in the zero
valuation, a valuation whose values are identically 0.

4 Compositional Models in VBS

Suppose we have marginals for two overlapping subsets of variables, say for {D,G}
and {D,B}. How do we construct a joint distribution for {D,G,B} that is consistent
with the two marginals (assuming that it exists)? In [4], the operation of “compos-
ing” the two marginals to obtain a joint distribution is introduced. One way to view



Compositional Models in Valuation-Based Systems 5

the composition operator is in terms of no double counting. Notice that the two
marginals are not distinct since the knowledge of {D} is included in both marginals.
So, the composition operator should aggregate the knowledge in the two marginals
while adjusting for the double counting of knowledge of {D}.

In practice, it is extremely unlikely we would find marginals on non-disjoint
subsets of variables with common marginals. In this case, there does not exist a
joint that agrees with both marginals. So we relax the requirements so that the joint
distribution that is constructed is required to agree only with the first marginal.

Composition. A general definition of composition is as follows. Suppose ρ and
σ are normal valuations for r and s, respectively. The composition of ρ and σ ,
written as ρ ◃ σ , is defined as follows:

ρ ◃ σ = ρ ⊕σ ⊖σ↓r∩s (4)

It can be seen directly from the definition in Equation (4) that the composition
operator is, in general, neither commutative nor associative. Its most important prop-
erties are summarized in the following lemma.
Lemma. Suppose ρ and σ are normal valuations for r and s, respectively. Then the
following statements hold.

1. Domain: ρ ◃ σ is a normal valuation for r∪ s.
2. Composition preserves first marginal: (ρ ◃ σ)↓r = ρ .
3. Commutativity under consistency: If ρ and σ have a common marginal for r∩ s,

i.e., ρ↓r∩s = σ↓r∩s, then ρ ◃ σ = σ ◃ ρ .
4. Associativity under a special condition: Suppose τ is a normal valuation for t,

and suppose s ⊃ (r∩ t). Then, (ρ ◃ σ)◃ τ = ρ ◃ (σ ◃ τ).
5. Composition of marginals: Suppose t is such that (r∩ s)⊆ t ⊆ s. Then

(ρ ◃ σ↓t)◃ σ = ρ ◃ σ .

5 Comparison with an Alternative Compositional Model

For belief functions in the D-S theory, the operator of composition was originally
introduced in [6]. Since, as it will be shown in a simple example, it differs from
the operator introduced here in Equation (4), we will use for the original operator a
slightly different symbol.
Definition Suppose ρ and σ are normal b-valuations for r and s, respectively. The
old-composition of ρ and σ , written here as ρ D σ , is defined for each a ⊆ Ωr∪s by
one of the following expressions:

[1] if σ↓r∩s(a↓r∩s)> 0 and a = a↓r ◃▹ a↓s then (ρ D σ)(a) = ρ(a↓r)·σ(a↓s)

σ↓r∩s(a↓r∩s)
;

[2] if σ↓r∩s(a↓r∩s) = 0 and a = a↓r ×Ωs\r then (ρ D σ)(a) = ρ(a↓r);
[3] in all other cases (ρ D σ)(a) = 0.
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Example. Consider the Studený’s example [1]. Suppose X ,Y and Z are variables
with state spaces ΩX = {x, x̄}, ΩY = {y, ȳ}, and ΩZ = {z, z̄}. Consider two b-
valuations ρ and σ for {X ,Z} and {Y,Z}, respectively, each having only two non-
zero values: ρ({xz̄, x̄z}) = ρ({xz̄, x̄z̄}) = 0.5 and σ({yz̄, ȳz}) = σ({yz̄, ȳz̄}) = 0.5.

In [7], it is shown that ρ D σ has also only two non-zero values:
(ρ D σ)({xyz̄, x̄ȳz}) = (ρ D σ)({xyz̄,xȳz̄, x̄yz̄, x̄ȳz̄}) = 0.5. Thus, we see that ρ D σ
is a proper normal b-valuation.

Also, ρ ⊕σ is a normal b-valuation with value 0.25 for the following four sets:
{xyz̄,xȳz̄},{xyz̄, x̄yz̄},{xyz̄, x̄ȳz},{xyz̄,xȳz̄, x̄yz̄, x̄ȳz̄}. In contrast, ρ ◃ σ = ρ ⊕ σ ⊖
σ−Y is a pseudo-bpa since (ρ ◃σ)({x̄ȳz}) = −0.25 (the following are the remain-
ing non-zero values of ρ ◃σ : (ρ ◃σ)({xyz̄,xȳz̄}) = 0.25, (ρ ◃σ)({xyz̄, x̄yz̄}) = 0.25,
(ρ ◃σ)({xyz̄, x̄ȳz}) = 0.5, (ρ ◃σ)({xyz̄,xȳz̄, x̄yz̄, x̄ȳz̄}) = 0.25).

It is worth mentioning that the same result as ρ D σ is obtained also by the
Srivastava-Cogger algorithm [13], but it need not be the case for different values of
the ρ and σ b-valuations in this example.

To understand the differences between the two operators of composition, recall
that a close connection exists between the combination operator ⊕ and a notion of
independence. Namely, after combining ρ for X and σ for Y , we get the valuation
ρ ⊕σ for {X ,Y}, with respect to which variables X and Y are independent. Simi-
larly, if ρ is a valuation for {X ,Z}, and σ is a valuation for {Y,Z}, with respect to
the valuation ρ ⊕σ for {X ,Y,Z}, variables X and Y are conditionally independent
given Z. However, several other concepts of independence and conditional indepen-
dence for belief functions exists in the literature. For a non-exhaustive survey, see
[1, 2].

In their seminal papers, Dempster [3] and Walley and Fine [15] considered a type
of independence that hold for variables X and Y with respect to bpa µ for {X ,Y} if

µ(a) =

{
µ↓X (a↓X ) ·µ↓Y (a↓Y ) if a = a↓X ×a↓Y

0 otherwise
for all a ∈ Ω{X ,Y}. (5)

Generalizing this idea, we define an alternative operation of combination, de-
noted by ⊕ , for b-valuations ρ and σ (for r and s, respectively) as follows. Suppose
K denotes ∑{ρ(a↓r) ·σ(a↓s) | a ∈ Ωr∪s s.t.a = a↓r ◃▹ a↓s}. The combination ρ ⊕σ
is the b-valuation for r∪ s given for all a ∈ Ωr∪s by

(ρ ⊕σ)(a) =

{
K−1ρ(a↓r)σ(a↓s) if K > 0, a = a↓r ◃▹ a↓s

0 otherwise.
(6)

It is obvious that ρ ⊕σ defined in Equation (6) is a proper normal b-valuation for
r∪ s, and that ⊕ satisfies all the three axioms of combination.

In a similar way, we define an alternative removal operator ⊖ . Suppose ρ and σ
are b-valuations for r and s, respectively, and suppose that ρ is normal. Let K denote

∑{σ(a↓s)

ρ(a↓r)
| a ∈ Ωr∪s s.t.a = a↓r ◃▹ a↓s,ρ(a↓r)> 0}. σ ⊖ρ is the b-valuation for s∪ r

given for all a ∈ Ωs∪r by
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(σ ⊕ρ)(a) =

{
K−1

(
σ(a↓s)

ρ(a↓r)

)
if K > 0, a = a↓r ◃▹ a↓s, ρ(a↓r)> 0

0 otherwise.
(7)

Thus, together with marginalization defined as in Section 3, we get an alternative
VBS for belief functions in the D-S theory. Let two normal b-valuations ρ and σ
for r and s, respectively, be such that

σ↓r∩s(x) = 0 =⇒ ρ↓r∩s(x) = 0.

Consider a ⊆ Ωr∪s for which a = a↓r ◃▹ a↓s. Then,

(ρ ⊕σ ⊖σ↓r∩s)(a) =

{
k
(

ρ(a↓r)σ(a↓s)

σ↓r∩s(a↓r∩s)

)
if σ↓r∩s(a↓r∩s)> 0

0 otherwise,
(8)

which, due to the definition of old-composition, can be rewritten as

(ρ ⊕σ ⊖σ↓r∩s)(a) = k (ρ D σ)(a).

Notice that because of the above assumption, when computing ρ D σ , whenever
case [2] of the definition of old composition applies, the value ρ(a↓r) = 0.

Since for all a ̸= a↓r ◃▹ a↓s, (ρ ⊕σ ⊖σ↓r∩s)(a) = (ρ D σ)(a) = 0, we get

(ρ ⊕σ ⊖σ↓r∩s)(a) = k (ρ D σ)(a), for all a ⊆ Ωr∪s.

Since we know that both ρ ⊕σ ⊖σ↓r∩s and ρ D σ are normal b-valuations (for the
former, it follows from the lemma presented in Section 4; for the latter, it is proved
in [6]), it follows that k = 1.

Thus, we have shown that the operator of composition defined in [6] can be
considered as a special case of composition in a VBS where combination is ⊕ ,
removal is ⊖ , and marginalization is the same as in the D-S theory.

6 Summary and Conclusions

We have described the VBS framework in general, and described the composition
model in the VBS framework using the semantics of no double counting of knowl-
edge. We have compared the compositional model defined in this paper for D-S
belief function theory with the one described in [6] for belief functions. Our con-
clusion is that although both of these compositional models are defined for belief
functions and its alternative representations (bpa, commonality, etc.), the former is
defined for the D-S belief function theory (that necessarily entails Dempster’s rule
of combination), and the latter for a belief function theory that has ⊕ as the rule of
combination. Both of these theories fit in the VBS framework, but they have differ-
ent semantics, different notions of conditional independence, etc.
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