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ABSTRACT This paper deals with asymmetric decision problems. We describe a generalization of the
valuation network representation and solution technique to enable efficient representation and solution
of asymmetric decision problems. The generalization includes the concepts of indicator valuations and
effective frames. We illustrate our technique by solving Raiffa’s oil wildcatter’s problem in complete
detail.

10.1 Introduction

This paper deals with asymmetric decision problems. An asymmetric decision problem can be
defined most easily using its decision tree representation. In a decision tree, a path from the
root node to a leaf node is called a scenario. We say a decision problem is asymmetric if there
exists a decision tree representation of it such that not all scenarios include all variables in the
problem. In asymmetric decision problems, some scenarios may exclude either some chance
variables, or some decision variables, or both. The main goal of this paper is to describe a
valuation network representation and solution of asymmetric decision problems.

Influence diagrams and valuation networks as originally conceived were designed for
symmetric decision problems. For asymmetric decision problems, these techniques makes an
asymmetric problem symmetric by adding variables and dummy configurations to scenarios. In
doing so, we increase the computational burden of solving the problem. For this reason, rep-
resenting and solving asymmetric problems has been the subject of several studies in recent
years.

In the influence diagram literature, four techniques have been proposed by Call and Miller
[1990], Smith ez al. [1993], Fung and Shachter [1990], and Covaliu and Oliver [1996], to deal
with asymmetric decision problems. Each of these four techniques is a hybrid of influence dia-
gram and decision tree techniques. In essence, influence diagram representation is used to
capture the uncertainty information, and decision tree representation is used to capture the
structural asymmetry information.

In this paper, we investigate the use of valuation networks to represent and solve asym-
metric decision problems. The structural asymmetry information is represented by indicator
valuations. An indicator valuation is a special type of a probability valuation whose values are

! Learning from Data: Al and Statistics V. Edited by D. Fisher and H.-J. Lenz. © 1996 Springer-Verlag.



100 Prakash P. Shenoy

restricted to either O or 1. Indicator valuations enable us to reduce the domain of probability
valuations and this contributes greatly to improving the computational efficiency of the solu-
tion technique. We use indicator valuations to define effective frames as subsets of frames of
variables. All numeric information is specified only for effective frames. The solution tech-
nique is mostly the same as in the symmetric case. The main difference is that all computations
are done on the effective frames of variables. This contributes to the increased efficiency of
the solution technique. Also, when restricted to effective frames, the values of indicator
valuations are identically one, and therefore indicator valuations can be handled implicitly and
this contributes further to the increased efficiency of the solution technique.

An outline of the remainder of the paper is as follows. In Section 2, we give a verbal
statement of the oil wildcatter’s problem [Raiffa 1968]. This is an asymmetric decision prob-
lem. In Section 3, we describe the valuation network representation method for asymmetric
decision problems and illustrate it using the oil wildcatter’s problem. In Section 4, we sketch a
fusion algorithm for solving valuation network representations. Finally, in Section 5, we sum-
marize and conclude.

10.2 The Oil Wildcatter’s Problem

The oil wildcatter’s (OW) problem is reproduced with minor modifications from Raiffa
[1968].

An oil wildcatter must decide either to drill (d) or not drill (~d). He is uncertain whether
the hole is dry (dr), wet (we) or soaking (so0).

Table I gives his monetary payoffs and his subjective probabilities of the various states.
The cost of drilling is $70,000. The net return associated with the d-we pair is $50,000 which
is interpreted as a return of $120,000 less the $70,000 cost of drilling. Similarly the $200,000
associated with the d-so pair is a net return (a return of $270,000 less the $70,000 cost of
drilling).

At a cost of $10,000, the wildcatter could take seismic soundings which will help deter-
mine the geological structure at the site. The soundings will disclose whether the terrain below
has no structure (ns)—that’s bad, or open structure (os)—that’s so-so, or closed structure
(cs)—that’s really hopeful. The experts have provided us with Table II which shows the prob-

TABLE 1. The utility matrix for the OW problem.

Wildcatter’s Act
profit, $ drill not drill || Probability
) @) (~d) of state
Dry (dr) | -70,000 0 0.500
State Wet (we) 50,000 0 0.300
Soaking (so) | 200,000 0 0.200

TABLE II. Probabilities of seismic test results conditional on the amount of oil.

Seismic Test Results (R)
No Open Closed
P(R|0) Structure  Structure  Structure
(ns) (0s) (cs)
Amount  Dry (dr) 0.600 0.300 0.100
of Wet (we) 0.300 0.400 0.300
Qil (0) Soaking (s0) 0.100 0.400 0.500
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FIGURE 1. Decision tree representation and solution of the OW problem.

dr L1 (70,000)

32,500 32,857

0.350

abilities of seismic test results conditioned on the amount of oil.

Figure 1 shows a decision tree representation and solution of this problem. The optimal
strategy is to do a seismic test; not drill if seismic test reveals no structure, and drill if the
seismic test reveals either open or closed structure. The expected profit associated with this
strategy is $22,500.

Notice that the OW problem is asymmetric. This problem has 16 scenarios. Of these, 9
scenarios include all four variables, 3 scenarios include only variables T, R, and D, 3 scenarios
include only variables T, D, O, and one scenario includes only variables T and D.

10.3 Valuation Network Representation

In this section, we describe the valuation network representation technique and illustrate it
using the oil wildcatter’s (OW) problem.

A valuation network representation is specified at three levels — graphical, dependence,
and numeric. This is somewhat analogous to Howard and Matheson’s [1981] relational, func-
tional, and numerical levels of specification of influence diagrams. The graphical and depend-
ence levels have qualitative (or symbolic) knowledge, whereas the numeric level has quantita-
tive knowledge.
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FIGURE 2. A valuation network for the OW problem. 10.3.1 Graphical Level

At the graphical level, a valua-
tion network representation
consists of a graph called a
valuation network. Figure 2
shows a valuation network for
the OW problem. A valuation
network consists of two types of
nodes — variable and valuation.
Variables are further classified
as either decision or chance, and
valuations are further classified
as either indicator, probability,
or utility. Thus in a valuation
network, there are in all five different types of nodes — decision, chance, indicator, probabil-
ity, and utility.

Decision Nodes. Decision nodes correspond to decision variables and are depicted by
rectangles. In the OW problem, there are two decision nodes labeled T, and D. T represents
the seismic test decision, and D represents the drill decision.

Chance Nodes. Chance nodes correspond to chance variables and are depicted by circles.
In the OW problem, there are two chance nodes labeled R and O. R represents the seismic test
result, and O represents the amount of oil.

Let xp denote the set of all decision variables, let Xg denote the set of all chance variables,
and let X denote XpUXR.

Indicator Valuations. Indicator valuations represent qualitative constraints on the joint
frames of decision and chance variables and are depicted by double-triangular nodes. The set
of variables directly connected to an indicator valuation by undirected edges constitutes the
domain of the indicator valuation. In the OW problem, there is one indicator valuation labeled
1. 11’s domain is {T,R}. 1; represents the constraint that seismic test result is not available if
the oil wildcatter decides not to do the seismic test.

Utility Valuations. Utility valuations represent factors of the joint utility function and are
depicted by diamond-shaped nodes. The set of variables directly connected to a utility valua-
tion constitutes the domain of the utility valuation. Depending on whether the utility function
decomposes additively or multiplicatively, the factors are additive or multiplicative (or per-
haps some combination of the two). In the OW problem, there are two additive utility valua-
tions labeled vy, and v,. v’s domain is {T}, and vy’s domain is {D, O}. v; represents the
profit from the seismic test decision, and v; represents the profit from the drill decision.

Probability Valuations. Probability valuations represent multiplicative factors of the
family of joint probability distributions of the chance variables in the problem, and are de-
picted by triangular nodes. The set of all variables directly connected to a probability valuation
constitutes the domain of the probability valuation. In the OW problem, there are two prob-
ability valuations labeled o, and p. 6’s domain is {O}, and p’s domain is {R, O}.

Information Constraints. The specification of the valuation network at the graphical
level includes directed arcs between pairs of distinct variables. These directed arcs represent
information constraints. Suppose R is a chance variable and suppose D is a decision variable.
An arc R—D means that the true value of R is known to the decision maker (DM) at the time
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the DM has to choose an alternative from D’s frame, and, cc?nversely, an arc from DR
means that the true value of R is not known to the DM at the time the DM has to choose an
alternative from D’s frame.

10.3.2 Dependence Level .
Next, we specify valuation network representation at the deperfdence level. Like the graphical
level, the dependence level involves only qualitative (or symbolic) knowledge. _

Frames. Associated with each variable X is a frame Wx. We assume that. all variables have
finite frames. In the OW problem, wt = {#, ~t}, where ¢ denotes do seismic test, and ~f de-
notes not do seismic test, Wg = {ns, 0s, ¢S, nr}, where ns denotes no structure, os denotes
open structure, ¢s denotes closed structure, and nr denotes no result; Wp = {d, ~d}, where d
denotes drill, and ~d denotes not drill, wo = {dr, we, so} where dr denotes dry, we denotes

aking.
wetba::l;gouii:?;::.s%\/e o%‘ten deal with non-empty subsets of variables in X. Gi\(en a non:
empty subset h of X, let Wy denote the Cartesian product of wx'fc?r X 1'n h, ie, Wy =
x{wx|Xeh}. We can think of wy, as the set of possible values of the joint vanab?e h. Accord-
ingly, we call wy, the frame for h. Also, we refer to elements of Wy as configurations of h. We
use this terminology even when h consists of a single variable, say X. Thus we refer to ele-
f Wy as configurations of X. .

men;:l:ic\;vt}:)r Vahflfizrms. Suppj;se s is a subset of variables. An indicator valyfrfion Jorsisa
function 1:Ws — {0, 1}. The values of indicator valuations represent .pr<?babllmes. T?le only
values assumed by an indicator valuation are 0 and 1, hpnce the term }ndlcator valuation. .?ln
efficient way of representing an indicator valuation is simply to describe the elements ‘of the
frame that have value 1, i.e., we represent 1 by Q, where Q. = {x e Ws|y(x) = 1}. Obviously,
Q,cW;. To minimize jargon, we also call Q, an indicator valuation for s. ‘ '

In the OW problem, we have one indicator valuation—; (or €,) with domain {T,R}.

This indicator valuation is specified as follows:
Q, = {(t, ns), (¢, 09), (t,cs), (~t, nr)}.
11 represents the constraint that the seismic test result is not available if the oil wildcatter de-
i eismic test. )
mdels’:(;tetcct)igz tohfeéonﬁgurations. Projection of configurations simply means dropping extra
coordinates; if (¢, ns, d, dr) is a configuration of {T,R, D, O}, for‘ example, then the projec-
tion of (¢, ns, d, dr) to {T, R} is simply (t, ns), which is a conﬁguratlon of {T, R}ih "
If g and h are sets of variables, hc g, and x is a configuration of g, then let x*! denote the
jection of x to h. ‘
projli’(l;::;i:alization of Indicator Valuations. Suppose Q,, is an indicator valuation for. a,
and suppose b a. The marginalization of Q, to b, denoted by de, is an indicator valuation
for b given by
Ql_“’ = {xeWp | (x,y) e, for someyeWas }.
To illustrate this definition, consider the indicator valuation €, for {T, R} in the OW
problem. The marginal of €, for {T} is given by the indicator valuation
Q VT = {1, ~1}.
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Combination of Indicator Valuations. Suppose €, is an indicator valuation for a, and
suppose £, is an indicator valuation for b. The combination of Q, and €, denoted by
Qla®le, is an indicator valuation for aub given by 0,20, =
{xeW,p|xt2eQ and xibe Q,).

Effective Frames. Suppose {Q},, ..., Q,} is the set of indicator valuations in a given

problem such that €, is an indicator valuation for sj, j = 1, ..., p. Without loss of generality,

assume that s;\.._s, = X. (If a variable, say X, is not included in the domain of some indica-
tor valuation, include the vacuous indicator valuation Q, for {X}, i.e., Q, = Wx.) Suppose s is
a subset of variables. The effective frame for s, denoted by €3, is given by

Qs = {®{Qy | skrs =D,
In words, the effective frame for s is defined in two steps as follows. First we combine indica-

tor valuations whose domains include a variable in s. Second, we marginalize the resulting
combination to eliminate variables not in s.

To illustrate this definition, consider the indicator valuations Q,, for {T, R}. Let ), denote

the vacuous indicator valuation for {O}. Then, for example, the effective frame for {R, O} is
givenby Qr oy = (Q,®Q )HR.0) =

{(ns, dr), (ns, we), (ns, 50), (0s, dr), (s, we), (os, s0), (cs, dr), (cs, we), (cs, so), (nr,

dr), (nr, we), (nr, s0)}.

Notice that the definitions of combination and marginalization of indicator valuations sat-
isty the three axioms needed for local computation {Shenoy and Shafer 1990]. Thus, we can
compute effective frames using local computation [Shenoy 1994]. Thus, e.g., to compute the
effective frame for {R, O}, by definition, Q{R’ o= (911®Qxl)l{R’ O} However, if we use lo-
cal computation, we can compute Q RO} = Qll‘LR®Q,,2. Notice that the combination in
(Q1]®le)“Rv Ol is on the frame of {T, R, O} whereas the combination in QHJ'R@Qlq is only
on the frame of {R, O}.

As we will see shortly, all the numeric information in probability and utility valuations are
specified on effective frames only. Thus, the definitions of marginalization and combination of
indicator valuations allow us to compute effective frames using local computation.

10.3.3 Numeric Level

Finally, we specify a valuation network at the numeric level. At this level, we specify the de-
tails of the utility and probability valuations.

Utility Valuations. Suppose ucx. A utility valuation v for u is a function v, —R,
where R is the set of real numbers. The values of v are utilities, If v is a utility valuation for u,
we say u is the domain of u.

In the OW problem, there are two utility valuations v; for {T}, and v for {D, O}. Table
IT1 shows the details of these utility valuations.
Probability Valuations. Suppose pcx. A probability valuation = for p is a function

7: Qp—>[0, 1]. The values of m are probabilities. If 7 is a valuation for p, then we s

ay p is the
domain of &. ’

In the OW problem, there are two probability valuations, o for {0}, and p for {O,R}. o
represents the prior probability for O, and p represents the conditional probability of R given

i i i isi Using Valuation Networks 103
Representing and Solving Asymmetric Decision Problems
TABLE IL I.];ti]ity valuations in the OW O and the fact that the values of R are not
‘ blem ruled out by structural constr.amts (see
e . [Shenoy 1993b] for more details). Table

Qp, 0} v2 Qr V] IV shows the details of these probability
-10,000 valuations.

j‘ :/i: ?(25?(? ~zt 0 We have now completel?v defined a

d so 200,000 valuation network representation of a fie—

~d dr 0 cision problem. In summary, a Valu%ltfon

~d we 0 network representation of a decision

~d__s0 0 problem A consists of decision variables,

chance variables, indicator valuations,

TABLE IV. Probability valuations in the OW probability valuations, utility valuations,

problem. and information constraints, A = {Xp, X,

Qo o Q0, R} p {11, . ), {01, Vm}. {P1, - Pa} 2}

dr [ 500 | droms 890 | 104 A Fusion Algorithm

we 300 dr os .300 '

S0 200 dr_cs 100 In this section, we sketch a fusion algo-
dr_nr 1 rithm for solving valuation network repre-
we ns 300 sentations of decision problems.
we o5 400 The fusion algorithm is essentially the
e zlE) same as in the symmetric case [Shenoy
e oo L 1992]. The main difference is in how indi-
so.ns 00 cator valuations are handled. Since indica-
so- o 400 tor valuations are identically one on effec-
50 =2 = tive frames, there are no computations in-
so nr i

volved in combining indicater vatuations.
This contributes to the efficiency of the
solution technique. Indicator valuations do contribute domain information and cannot be to-
tanyl:i;z;eiith respect to a decision variable D is defined as follows. All utility and. mdice‘llt.or
valuations that include D in their domain are combined .together_, and the FeS}lltnng u; ity
valuation v is marginalized such that D is eliminated from 1ts_ domain. A new 1rill<.11cat(:' vti::;
tion {p for h corresponding to the decision function for D is create.d.. The u't 1t.y v ua.al "
that do not include D in their domain remain unchanged. All probablhty. and mdxce;{ior valu
tions that include D in their domain are combined tog.ether and the rc?sult.mg- probafl; ty.\tr (L;a—
tion p is combined with p and the result is marginalized s0 that D is ehrrur}ated om i sm a?l;
main. The probability and indicator valuations that do not include D in their domains re
unc}lzins;g::with respect to a chance variable C is defined as fc.>110w54 The utility, probalglilbtz,
and indicator valuations whose domains de not include C.r‘emam u.nc}Tanged A new pro : 1s ;
ity valuation, say p, is created by combining all probaplht.y and. indicator valu:.tlon; 1w ob-
domain include C and marginalizing C out of the combmatlon.'F‘mally, we combine b;g?i
ability and indicator valuations whose domains include C, dlwde_the resultng pro 1 alb :K
valuation by the new probability valuation p that was created, combine the resulting pro
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ity valuation with the utility valuations whose domains incl inali

‘ n . ude C, and finally marginal
resulting utility valuation such that C is eliminated from its domain, Y mergielze the
The details of the fusion algorithm are given in [Shenoy 1993b]. Figure 3 depicts the fu-

:;(()n algorithm graphically for the OW problem. The numerical details are shown in Tables V-

FIGURE 3. The fusion algorithm for the OW problem.

®c
=(P ®02)l(R,D;

v

=5
<& V <

T e

:

V= (1l®pl®n4)u Ve = (v, ® “s)w
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TABLE VI. Fusion with respect to O

KT (continued from Table V).
P& | P Plpr B = R, DT
=i - — A" P p®02 v
Qroy P | o | =9 |=p1|=P Qi 1o N e e
ns we| 300 | 300 | .090 ns d wel 219 :
ns sof.100|.200 | .020 | B ns d sol|.049
os dr| 300500 .150 | .350 | .428 s ~d drl.732
os we| 400 | 300 | .120 | ns ~d wel 219
os so|.400|.200| .080 | ns ~d so|.049
cs dr|.100 | .500 | .050 os d dr|.428
cs we| 300 | .300 | .090 : os d wel 343
os s0|.500|.200| .100 | 1 .417 os d sol| 228
e dr| 1 [.500.500 | 1 | .500 os —d dr| 428
nr we| 1 .300 | .300 | os ~d wel 343
or so| 1 |.200] 200 os ~d sol| 228 -
TABLE VILI. Fusion with respect to D cs d dr|.208|-70|-1456| 87.5 |
" cs d wel.375| 50 :
L3 cs d so|.417| 200
Qppy| Y3 | =V s ~d dr|208] 0
ns = cs ~d we|.375| 0
ns cs ~d so|[.417]| O
0s nr d dr|.500]| -70
os nr d we|.300| 50
cs nr d so|.200] 200
cs nr ~d dr|.500| O
nr nr ~d we|.300| O
nr nr ~d so|[.200] O
TABLE VIII. Fusion with respect to R.
(1L®p V)"
Qir.ry |u®P1| Vs | uBPIOV, = Vs
t ns| 410 0 0 3250
t os| .350 [32.86 11.50
t cs| .240 | 875 21 i
~t nr 1 20 20 20
TABLE IX. Fusion with respect to T.
(0185 (#)
Qr | vy | vs |V®Vs =v4(¢) Ex(¢)
t | -10 [3250[ 2250 | 2250 | t
~t 0 20 20 Fi e
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10.5 Summary and Conclusion

The main contribution of this paper is a generalization of the valuation network technique for
representing and solving asymmetric decision problems. The structural asymmetry in a deci-
sion problem is represented by indicator valuations. An indicator valuation is a special type of
a probability valuation. Indicator valuations allow us to reduce the domain of probability
valuations. This contributes to the efficiency of the solution technique. Also, indicator valua-
tions are used to define effective frames. An effective frame is a subset of a frame. All compu-
tations are done on effective frames, and this contributes also to the efficiency of the solution
technique.

In [Shenoy 1993b], we compare the asymmetric valuation network representation and
solution technique with the symmetric valuation network technique described in [Shenoy
1992], and with the influence diagram-based technique of Smith ez al. [1993].
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