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REAL-TIME TELESCOPE TASKING FOR CUSTODY AND
ANOMALY RESOLUTION USING JUDICIAL EVIDENTIAL

REASONING

Daniel Aguilar Marsillach ∗, Shahzad Virani †, Marcus J. Holzinger ‡, Moses W.
Chan §and Prakash P. Shenoy ¶

As the near-Earth space object population increases in size, SSA sensor task-
ing becomes more complex. Most forms of tasking focus on covariance mini-
mization, information maximization or catalog maintenance. Limited work has
been done on tactical hypothesis-based sensor tasking, which resolves the prob-
lem from a decision-making perspective. Hypotheses can be formulated resolved
using Dempster-Shafer evidential reasoning. Previous work lead to the formula-
tion of Judicial Evidential Reasoning, resulting in optimal and unbiased hypothe-
sis resolution under time constraints. This paper focuses on applying the Judicial
Evidential Reasoning algorithm to resolve the anomaly and custody hypotheses
of space objects using a telescope. The contributions in this paper include for-
mulating new evidence to hypothesis belief mappings in Dempster-Shafer theory,
incorporating a reachability set search action, and implementing the algorithm in
real-time for a narrow field-of-view telescope.

INTRODUCTION

There is a warranted concern for the safety of current and future space-assets as a result of an
increasing number of Earth-orbiting objects. To guarantee the safety of future space missions and
operations, for commercial or scientific reasons, it is imperative to understand and predict how
resident space object states are evolving.1 This is part of the goal of space situational awareness
(SSA). It is essential that capabilities to detect and track space objects using both ground and space-
based instrumentation are improved. An important goal of which is minimizing conjunction events
between current resident space objects (RSOs).

Currently, there are a limited number of optical and radar ground sensors that are used to up-
date state estimates of the RSO population. Information about the current state of the environment
is extracted by taking measurements (sensing) and combining them with physics-based models.
However, due to an increasing RSO population, maintaining an understanding of the orbital envi-
ronment is becoming increasingly challenging due to limited time and resources. As a result, an
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area of improvement lies in the tasking of sensors for SSA. This boils down to resource utilization
for both ground and space-based observers. Previous tasking methodologies are aimed at extracting
high-quality six-dimensional state estimates through covariance minimization or Fisher informa-
tion maximization.2,3 This allows operators to predict the dynamics of RSOs with greater accuracy
and reliability.4 Covariance minimization techniques are essential for accumulating data to resolve
unknown unknowns. However, how one uses a suite of sensors to resolve known unknowns is of
interest as it links SSA hypotheses directly to sensor management. How sensors are used to track
known targets in place of searching for new ones is non-trivial.5 This paper focuses on the tasking
problem from a hypothesis centric perspective using evidential reasoning techniques and ignores
active searching for unknown RSOs.

Past work has been completed using Dempster-Shafer (DS) theory for tasking or decision-making
problems. DS theory is one of many theories of belief functions and lies at the core of this work.
Hypotheses can be formulated mathematically using the frame of discernment, which is essentially
an outcome space. Compared to other belief function theories, such as Bayesian probability theory,
DS theory is more expressive when modeling ignorance (ambiguity) in the state space of a random
variable, as belief can be given to subsets of the frame of discernment. In Bayesian theory, declaring
complete uncertainty and having an uninformative prior are both modeled as a uniform distribution
of equally-likely propositions.6 DS theory allows one to model these two differing cases unam-
biguously, which can be important for decision-makers acting on resulting information. Though
many evidence-gathering approaches prioritize maintaining low overall state covariance, it is not
immediately clear how this affects situational awareness or aids in decision-making. This motivated
an approach that considers decision-making objectives as hypotheses that can be investigated by
evidence-gathering actions.7

One such tasking scheme focused on minimizing the ignorance or ambiguity in the proposed
frame of discernment, which drives the system to resolve hypotheses. This methodology was ap-
plied to an SSA scenario where custody of RSOs is maintained.8 More recently, Jaunzemis et al.
developed a general decision-making algorithm that optimally selects actions to reduce total system
entropy.7 Using adversarial optimization, action sequences that are optimal to specific propositions
of a frame of discernment are combined to form a single hybrid action sequence. This paper extends
the capabilities of Judicial Evidential Reasoning (JER) and applies it to a real telescope system.

Two indvidual hypotheses are considered for each RSO. The first hypothesis relates to main-
taining custody of RSOs. The second one, denoted the anomaly hypothesis, requires determining
whether or not an RSO is in its nominal orbit. Any deviation from the nominal orbit provides ev-
idence of unknown or unexpected dynamics, which can be caused by unmodeled perturbations or
maneuvers. This hypothesis is particularly important as RSOs in anomalous orbits can compromise
the safety of other active assets. This work presents the results obtained when implementing the
JER algorithm on the Georgia Tech - Space Object Research Telescope (GT-SORT) to resolve the
listed hypotheses using optical data in real-time.

A lack of custody requires a search methodology for re-acquisition. As such, a search strategy
is incorporated into this version of JER that iteratively observes volumes of state space near the
object’s nominal orbit. It is assumed that the maximum deviation with respect to this trajectory is
related to the object’s reachable set. This set can be constructed using optimal control techniques
and highlights the maximal distance in Rn that an object can travel, placing a maximum bound on
the object’s deviation from a nominal trajectory. This constrains the search region. JER uses DS
theory combined with estimation techniques to form a tasking algorithm that is able to evaluate
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and execute action sequences for optimal hypothesis resolution. Hypotheses are posed using natural
language and can be general in formulation, as long as there is an ability to map evidence to them. In
some sense, JER allows a user to specify and define how much evidence is required to appropriately
resolve a hypothesis.

This paper contains a number of contributions relating to the application and extension of the
JER scheduling algorithm for SSA. First, reachability search actions are introduced such that the
algorithm is able to survey portions of state-space to detect and track RSOs whose custody is not
maintained. Second, new evidence to hypothesis belief mappings are formulated that result in an
improved way of quantifying evidence. Lastly, the algorithm is interfaced with existing observatory
hardware for the purpose of an empirical validation.

BACKGROUND THEORY

Dempster-Shafer Evidential Reasoning

An advantage of DS theory is its ability for reasoning with epistemic uncertainties, as one can
model degrees of support for a particular proposition, given a piece of evidence. This can sim-
plify decision-making by using Dempster’s combination rule for aggregating independent pieces
of evidence.9 The theory allows one to pose and resolve a hypothesis mathematically as well as
model complete ambiguity and equally likely propositions differently. Moreover, Bayesian proba-
bility theory is embedded in Dempster-Shafer theory as a special case, and can be interpreted as a
generalization of that theory.9

The available state space of a variable is denoted by the set Θ called the frame of discernment.
The elements of the power set of Θ, 2Θ, or the set of all subsets, are referred to as propositions. By
definition, the allowable state variables in the frame of discernment have to be mutually exclusive
and collectively exhaustive, implying that only one element of the frame of discernment can be true.

For a given frame of discernment, Θ, the basic probability assignment (BPA) function m assigns
degrees of belief or support to particular elements of the power set 2Θ and is defined as:

m : 2Θ 7→ [0, 1] (1)

m(∅) = 0 (2)

∑
a∈2Θ

m(a) = 1 (3)

The constraint in Eqn. 3 enforces the mutually exclusive and collectively exhaustive property.
The quantity m(a) is the basic probability mass of set a, and is interpreted as the belief assigned
exactly to a (not its subsets). Additionally, Eqn. 2 enforces that no belief is committed to the null
set.

Two BPAs m1 and m2, representing distinct pieces of evidence, can be combined to form a new
aggregate BPA m1 ⊕m2 using Dempster’s combination rule:11
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(m1 ⊕m2)(a) = K−1
∑

b1,b2∈2Θ:b1∩b2=a

m1(b1)m2(b2) (4)

where K is a normalization constant given by:

K = 1−
∑

b1,b2∈2Θ:b1∩b2=∅

m1(b1)m2(b2) (5)

Dempster’s rule of combination yields a BPA that updates the belief states in the frame of dis-
cernment. If distinct pieces of evidence agree, a new BPA is created that reflects more support for
a particular set of propositions. If K = 0, then BPAs m1 and m2 are said to be in total conflict,
and the evidence cannot be combined. If K = 1 then BPAs m1 and m2 are non-conflicting. This
normalizing constant is used to account for any belief given to the null set.

Additionally, the plausibility function, denoted Plm(x) corresponding to BPA m, is defined as:

Plm(a) =
∑

b∈2Θ:b∩a6=∅

m(b) (6)

for all a ∈ 2Θ. The plausibility of a is the sum of the belief masses for propositions that do not
explicitly refute a, and can be interpreted as an upper bound on the possibility that a is true.

Moreover, Cobb and Shenoy defined a way to transform Dempster-Shafer belief functions to
Bayesian probability ones, through the plausibility transformation.12 This is motivated by the fact
that decision-making criteria is simpler in Bayesian theory. Though DS theory is excellent at com-
bining pieces of information, it comes with the limitation of not having a specific guide on how to
make decisions. Other transform types include the pignistic probability transform.13 The plausi-
bility transform thus allows one to use Bayesian decision-making criteria with DS theoretic belief
functions. This transformation is defined as:

Prplm(x) = K̃−1Plm(x) (7)

where
K̃ =

∑
x∈Θ

Plm(x) (8)

Judicial Evidential Reasoning

Fundamentally, JER selects actions that best resolve a set of hypotheses. The algorithm itera-
tively evaluates action paths that gather multiple pieces of evidence to resolve hypotheses to a rea-
sonable tolerance. Since frames of discernment are mutually exclusive and collectively exhaustive,
JER attempts to find the true state variable by minimizing a defined cost function. One poten-
tial cost function is entropy, which is a measure of uncertainty in the state space. Many entropy
definitions are summarized in Jiroušek and Shenoy’s prior work.14 One such definition is Jiroušek-
Shenoy (J-S) entropy, which is interpreted as a measure of total uncertainty in a BPA. This new
definition combines Shannon and Dubois-Prade entropy to capture both conflict (uncertainty) and
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non-specificity (ambiguity).14 Low conflict means significant belief mass is attributed to a single-
ton proposition. Non-specificity captures mass given to subsets of the frame of discernment with
non-singleton propositions.

J-S entropy is maximum for vacuous BPAs that represent complete ambiguity or ignorance. This
occurs when all of the belief mass is given to the frame of discernment such that m(Θ) = 1,
representing a complete lack of knowledge of which element a ∈ Θ is true. Minimizing J-S entropy
is directly equivalent to identifying the true proposition in a frame of discernment. J-S entropy
then becomes an appropriate measure, or objective function, to be minimized for the purposes of
hypothesis resolution. However, obtaining necessary optimality conditions is difficult due to the
high-dimensional, mixed-integer and nonlinear properties of the problem. As such, a computational
approach is adopted where potential outcomes, due to actions, are scored and chosen to task a
sensor.

JER seeks to resolve a set of hypotheses, Θ = {Θ1, ...,Θh}, where Θh is an individual hypothesis
of size |Θh|. A discrete-time sequence, t = [t0, t1, ..., tf ], is considered at which sensor actions can
be taken. An action at time ti, for a particular sensor j, is denoted ai,j . The sequence As =
[a1,s, a2,s, ..., af,s] represents a discrete-time action sequence for sensor s over the time-horizon,
where s is the sensor index. Additionally, each sensor has a variable number of possible actions
|ai,j | at a particular time index. The set containing all the possible action sequences for a single
sensor s is denoted αs = [A1, ...,Ap], where p is the number of unique action sequences. When m
sensors are considered, the full set of available actions is computed via Cartesian products:

α = α1 × α2 × · · · × αm (9)

In this paper, actions are abstracted as deliberate choices for a sensor to observe a particular
RSO. If there is a single ground station, and 5 RSOs are visible for the entire time-horizon, then,
the sensor has 5 available actions at each moment in time. In reality, different RSOs are visible to
different ground stations at different times. This is taken into account when computing available
action sequences.

The objective is to minimize the J-S entropy, HJS , of all hypotheses. The weights, wh, specify
the priority or preference for resolving a particular hypothesis h. Mathematically, the problem is:

α∗ = arg min
α

|Θ|∑
h=1

whHJS , (10)

where α contains the decision variables (sequences) over which the optimization occurs. If only
one sensor is considered, then α = α1. If there are n RSOs of interest, then the action at time ti for
a given sensor j, is a function of the following form:

ai,j = f(xrso(t),xgs(t), Pd), (11)

where xrso,xgs ∈ R6 are the RSO and ground station’s state vectors, respectively. Pd is the
probability of detecting the space object in a given image. The function f represents whether or not
an RSO is in the field-of-view (FoV) of the ground station and is detectable by the sensor.
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The initial (prior) BPA for a particular hypothesis h is denoted mh,0. A challenging aspect of this
work is mapping pieces of evidence to hypotheses and forming BPAs that can be combined using
Dempster’s combination rule. Generally, for a particular hypothesis Θh, Dempster’s combination
rule results in a final BPA for hypothesis h:

mh,α = mh,0 ⊕mh,ev1 ⊕ ...⊕mh,evi ⊕ ...⊕mh,evE = mh,0 ⊕
E⊕
i=1

mh,evi , (12)

where mh,evi are evidence BPAs acquired at time-step ti related to hypothesis h. E is the total
number of acquired pieces of evidence. Multiple pieces of evidence can be gathered at a single time
index if multiple sensors are used. As such, the pieces of evidence result from selecting a given
sequence in α. Not every hypothesis state will be updated at each time-step. This highlights the
need for an effective decision-making algorithm, since taking an action over another always results
in some opportunity cost.

Since optimizing Eqn. 10 is non-trivial, the original formulation is broken down into a sub-
problem using adversarial optimization for computational tractability. An action tree is formed and
optimized by using alpha-beta pruning. An alternating agent approach is adopted using minimax
and maximin optimization. In minimax optimization, both agents try to minimize the potential loss
for a worst-case scenario. Similarly, in maximin optimization, both agents try to maximize their
minimum gain.

A pair of agents are assigned to each proposition {θ} for every hypothesis Θh. In the case of
binary hypotheses, only a single pair is assigned to the frame, since the critic agent would try
to minimize the belief in {θ}. This transforms part of the action-sequence computation into an
alternating turn game. By finding and implementing action sequences that are proposition selfish,
one gives equal opportunity to opposing agents to build a case for or against a particular proposition.
This process is analogous to the judicial system, where two sides build a case with supporting
evidence, hence the name Judicial Evidential Reasoning. This approach reduces confirmation bias
and limits convergence to erroneous propositions. For this purpose, the JER algorithm iteratively
flips between maximin and minimax optimization.

For a particular hypothesis Θh ∈ Θ, each proposition must be confirmed or refuted with evidence,
so each proposition is assigned a pair of agents. When the advocate agent is active, its goal is to
maximize belief in proposition {θ}, using maximin optimization with the plausibility transform:

α∗{θ} = arg max min
α

Prpl(θ;mh,α), {θ} ∈ 2Θh , (13)

where mh,α is the final BPA for hypothesis h as a result of implementing action sequence α.
The plausibility probability is maximized when m({θ}) = 1 and is minimized when m({θ}) = 0.
When the critic agent is active, its goal is to maximize belief in ¬θ or equivalently, minimize belief
in {θ}, thus the formulation flips to:

α∗¬θ = arg min max
α

Prpl(θ;mh,α), ¬θ ∈ 2Θh (14)

The set of all proposition minimax or maximin action sequences, α∗{θ} and α∗¬θ, is denoted
αagents. Once the agent pairs have evaluated the maximin or minimax action sequences for each

6



proposition, a final action sequence needs to be chosen from the full set of possible maximin or
minimax actions αagents. This is done by determining which sequence in αagents minimizes the
original cost function:

α̃∗ = arg min
αagents

|Θ|∑
h=1

whHJS (15)

To capture the changing belief states over time, the JER algorithm is implemented using a re-
ceding time-horizon approach. Consequently, the first actions in α̃∗ are implemented and the full
process is repeated again for the next time step. The actions change the belief state initial conditions,
providing the necessary feedback for the algorithm to resolve all of the hypotheses. More details
regarding JER can be seen in Jaunzemis’ prior work.7 JER does require significant computational
effort, due to the lack of analytical optimality conditions, as mentioned above. Many action se-
quence combinations are evaluated. The problem size grows exponentially with increasing numbers
of hypotheses. To compensate for this limitation, alpha-beta pruning is used to prune suboptimal
minimax or maximin actions in the decision trees.

JER and SSA Applications

Satellite operators and monitors are interested in whether RSOs are in their nominal orbits. An
object can be in an anomalous orbit if force perturbations act on the body over time or the object
performs a maneuver, resulting in deviations away from the nominal trajectory. Both of these cases
can result in a loss of custody. Maintaining custody of objects is pivotal to prevent conjunction
events or collisions. As such, these hypotheses are investigated in this paper for a set of RSOs.

The geometry of the problem is shown in Figure 1. The telescope’s FoV will determine how
many distinct actions are required. If multiple objects of interest can be seen in one image, less
independent actions are required to resolve their hypotheses. The available telescope actions are ab-
stracted as ”track” or ”search” actions. The action length is fixed and uniform throughout the whole
time-horizon. The ”track” action results in the telescope observing the nominal TLE trajectory for
an RSO over the action interval. The ”search” action performs a reachability set search around the
nominal trajectory. In Figure 1, there is a single ground station and three RSOs in the ground sta-
tion’s FoV. Since the telescope cannot observe all of the RSOs simultaneously, JER computes when
each RSO is observed. In the illustration, two RSOs are in nominal orbits that closely match the
TLE. One object has maneuvered and is deviating significantly from the nominal trajectory.

Figure 2 provides a visual explanation of a case where an anomaly has occurred. As observations
of the satellite are acquired, the estimated state will converge towards the truth. As time elapses,
the dissimilarity of the trajectories becomes increasingly obvious. If observations were taken near
the epoch time t0, there could be some ambiguity regarding the orbit status, due to the trajectories’
proximity and high estimate covariance. However, if the same process is repeated later, closer to
tf , it becomes more obvious that the RSO is anomalous. In practice, when this divergence becomes
significant enough is not known a-priori. As such, it is important to take repeated observations to
gather an accumulation of evidence.

Using DS theory, the anomaly hypothesis is defined with the following frame of discernment:

ΘA = {N ,A}, (16)
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Figure 1: Geometry of the Problem

Figure 2: Anomaly Illustration

where N and A denotes nominal and anomalous, respectively. The power set of the frame is:

2ΘA = {∅, {N}, {A}, {N ,A}} (17)

Similarly, the custody frame of discernment is:

ΘC = {C,¬C} (18)

and the corresponding power set is:

2ΘC = {∅, {C}, {¬C}, {C,¬C}} (19)

The evidence acquired over an action interval is defined by the following BPAs:
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mc({C}) = Pd ∗ Pc ∗Kc

mc({¬C}) = Pd ∗ (1− Pc) ∗Kc

mc(ΘC) = 1−mc({C})−mc({¬C})
ma({N}) = Pd ∗ Pn ∗Kn

ma({A}) = Pd ∗ (1− Pn) ∗Kn

ma(ΘA) = 1−ma({N})−ma({A})

, (20)

where Pd, Pc, and Pn are the probability of detecting an RSO in a given image, the probability
of having custody, and the probability of an RSO being nominal, respectively. The scalars Kc

and Kn are defined between [0, 1]. If they are less than 1, they provide belief mass to the frame
of discernment as ambiguity. This is used in this work to acquire multiple pieces of evidence to
achieve proper hypothesis resolution.

RSO state estimates are obtained using an Unscented Kalman Filter (UKF) and angles-only mea-
surement updates,15 resulting from processed images. It is assumed that the multi-dimensional state
distribution of the RSO is Gaussian, with mean x̂ and covariance P :

x ∼ N (x̂, P ) (21)

The probability of an RSO being nominal, Pn, is computed using the Mahalanobis distance (MD)
between a state estimate, x̂, and the nominal state from the propagated TLE trajectory, xTLE . The
relevant MD is computed as:

d(xTLE) =

√
(xTLE − x̂)T P̃−1(xTLE − x̂) xTLE , x̂ ∈ R6 (22)

The MD is a measure of the probability that xTLE belongs to the distribution:

x ∼ N (x̂, P̃ ), (23)

Where,

P̃ 6= P (24)

The distance matrix P̃ used is not the estimate’s covariance matrix. If an estimate converges
towards the truth and has a ”small” covariance, then large MD can be computed despite true prox-
imity in state space, yielding an RSO to be erroneously classified as anomalous. As such, to better
classify the anomaly, P̃ is defined a-priori as a region around the state estimate mean such that if
xTLE falls within this region, it is likely to be considered nominal. The matrix P̃ is defined as:

P̃ = diag(σ̃x, σ̃y, σ̃z, σ̃ẋ, σ̃ẏ, σ̃ż), (25)

where,
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σ̃i =
20√

3
km, i = x, y, z (26)

σ̃k =
0.2√

3
km/s, j = ẋ, ẏ, ż (27)

These conservative values are chosen because of the instrumentation used, the location of the
ground station, and since unmodeled perturbations can induce deviations of roughly 10 km per day
for satellites in geostationary orbits.

Moreover, let Q be a random variable, representing the squared MD, with chi-squared distribu-
tion:

Q ∼ χ2(k), (28)

where k are the degrees of freedom of the distribution, equal to the dimension of the vector xTLE

k = dim(xTLE) = 6, xTLE ∈ R6 (29)

As such, to quantify anomaly, the question can be posed by speculating whether the vector xTLE
belongs to the distribution given by N (x̂, P̃ ). This is the same as detecting outliers using the MD
of a given point with respect to some mean. The probability that xTLE belongs to the underlying
distribution is then:

P(Q > d2(xTLE)) = 1− P(Q ≤ d2(xTLE)) (30)

This probability is readily computed using statistical packages. Thus, the probability that an
object is in the nominal orbit is given by:

Pn = P(Q > d2
xTLE

) ≤ 1 (31)

The higher the MD, the lower Pn, providing more support to the anomalous proposition of an
RSO’s frame of discernment.

The approach used to compute Pc, the probability of having maintained custody, is simpler. If an
action to track a particular RSO is taken, and the RSO does not appear in the FoV, then there may
be evidence of lost custody. Hence, a thresholding technique is used based on whether the RSO is
detected, yielding:

Pc =

{
0, Not Detected

1, Detected
(32)

The probability of detecting an RSO in optical data, Pd, scales the belief masses in the singleton
propositions of the hypotheses. It is defined in Coder et. al’s prior work.16 In general, it is a func-
tion of telescope parameters, atmospheric transmittance, sky brightness, and the detection algorithm
used. Environmental effects can alter the visibility of an object in optical data, which in turn alter
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how the evidence being fed into JER is quantified. High probability of detection should minimally
impact the evidence for a proposition. However, low probability of detection would imply more
ambiguity in the measurements obtained, and thus, should reduce the belief mass given to a propo-
sition. In practice, the demonstration is only attempted on cases where the probability of detection
was high due to clear skies and thus Pd is kept constant in the current work.

If the belief in the custody proposition increases past a certain threshold, a search action has to be
taken to find the RSO and maintain custody of it again. This assumption constrains the reachable
distance of an RSO relative to the nominal orbit. Since reachability set searches are not the focus of
this paper, a simplification is made regarding the maximum distance of the reachable set based on a
Lemma in Holzinger et. al’s previous work.17

Figure 3: Reachable Volume Search

The reachable set,Rpos is pictured in Figure 3. The exact reachable set can be seen by the larger
gray volume. For an arbitrary initial ellipsoidal surface, there is a maximum reachable distance in
a given time-horizon. Instead of assuming some control thrust capability for each RSO, this paper
assumes a conservative df,max of 155 km, or an angular error of 0.25◦. The rectangle in Figure 3
represents the telescope’s FoV in Cartesian state space or the projection of state space onto the
telescope’s image plane. When searching the state space, images are taken sequentially over this
volume. The maximal spherical volume in R3, with radius df,max, is projected onto the image plane
and then the area is divided into angular coordinates. These sub-areas of the projected volume are
observed until the RSO of interest is detected and tracked, so that custody is maintained again by
updating the state estimator. The search volume, projected into angular space, results in:

αmax,min = αest ± φd
δmax,min = δest ± φd

(33)

Where φd is the maximum angular offset to search in angle space, corresponding to the reacha-
bility radius df,max. Additionally, αest, δest are the estimated topocentric right-ascension and dec-
lination of an RSO.
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HARDWARE & EMPIRICAL METHODOLOGY

The JER algorithm is fundamentally a scheduler, telling each sensor in a network what RSO to
observe. Adversarial optimization is used to compute agent schedules, which are combined to form
an aggregate schedule that best reduces system entropy. A summarized process highlighting the JER
algorithm for the empirical validation is presented in Algorithm 1. The receding horizon approach
results in the first action being selected and executed. The measurements over an action interval
are used to quantify the evidence. A BPA is formed for each piece of evidence, which are then
combined, updating the belief states for each hypothesis. This process is repeated until the overall
J-S entropy is reduced below some predefined threshold.

Initialize:
Ground stations;
UKF estimators;
Reachability volume;
D-S Hypotheses;

while
∑|Θ|

h=1whHJS > Ht and ti < tf do
• Compute action sequences: adversarial agent optimization & α− β pruning;

• Form agent combination schedules αagents;

• Compute optimal aggregate schedule, α̃∗, that minimizes
∑|Θ|

k=1wkHJS ;

• Execute first action: capture and process images (evidence);

• Fuse evidence and update hypotheses Θ: Dempster’s Combination Rule

if Lost custody: m({¬C})h > tc then
Trigger reachability set search;

else
Continue with nominal RSO observations ;

end
end

Algorithm 1: Judicial Evidential Reasoning Algorithm Summary

A sophisticated code base is required to communicate with the telescope mount and electro-
optical sensors simultaneously. For this particular trial, GT-SORT, located in Midtown, Atlanta,
USA, is used. This high-resolution and narrow FoV Raven Class telescope is made with commercially-
off-the-shelf components. Software Bisque’s Paramount ME II telescope mount is used to control
the pointing with TheSkyX Professional Edition software. Interfacing the JER code and incorpo-
rating telescope and camera control modules requires custom made scripts developed in Python.
Two optical sensors are used, namely, the ZWO AS I071MC Pro (color) and ZWO ASI174MM-
Cool (mono) cameras. The cameras are used for the telescope and finder scope, respectively. The
physical setup used is detailed in Figure 4 and Figure 18 in Appendix A.

The images taken with the main telescope and finder scope cameras are processed and used to
quantify evidence as described above. To extract accurate measurements, calibration is required to
remove sources of error in the hardware setup using a telescope T-Point model. The effect of timing
errors are mitigated during the data acquisition phase by synchronizing the main computer’s clock
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Figure 4: GT-SORT Ready to Track Space Objects from Midtown Atlanta, USA

with atomic clocks through a Network Time Protocol (NTP) server. Additionally, the finder scope’s
bore sight is aligned with the main telescope’s optical axis by observing and adjusting the finder
scope mount after pointing at a particular star or feature with both cameras. Table 1 and 2 shows
the GT-SORT and finder scope optical performance characteristics.

Table 1: GT-SORT Performance

Focal Ratio FoV (arcmin.) iFoV (arcsec.) Limiting Magnitude

f/6 25.56 x 16.98 0.31 12.9

Table 2: Finder Scope - Rokinon 135 mm Lens - Performance

Focal Ratio FoV (arcmin.) iFoV (arcsec.) Limiting Magnitude

f/2 287.58 x 181.38 8.127 12.06

Since the GT-SORT takes high-angular resolution and narrow FoV images, detecting stars in a
location like Midtown Atlanta, with high amounts of light pollution, is difficult. Answering the
anomaly hypothesis requires rate-tracking an RSO and acquiring accurate astrometric information
from the images. The light pollution in the city makes star detection challenging with narrow FoV
telescopes. Additionally, to identify the object in a given image, multiple images have to be pro-
cessed for successful object discrimination. When the telescope is rate-tracking a TLE, the RSO’s
position will remain approximately in the same pixel coordinates with the addition of some noise.
Tracking the RSO frame to frame is done with a Gaussian-Mixture Probability Hypothesis Filter,
readily available from previous lab projects. This is a high SNR multi-object tracking algorithm
that uses multiple particle filters to track objects across several image frames.

To extract angle measurements, the inertial (star) background can be used to back out topocentric
right ascension and declination measurements of the RSO. To compensate for a lack of star detec-
tions in the telescope’s main camera, an additional wide FoV finder scope is used to extract more
astrometric information. Figure 19, in Appendix A, shows the result of images taken with the finder
scope and telescope simultaneously. The visible frame corresponds to the finder scope where the
black detections are stars. The red detections are stars visible through the telescope mapped into
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the finder scope’s coordinate frame. The difference in angular FoV is evident in the figure. When
rate-tracking, the number of star detections decreases significantly as the star point-spread functions
(PSFs) are integrated over the sensor area in the telescope. Hence, using the finder scope increases
the probability of resolving the astrometry of the image.

Using the two imaging systems requires mapping detections in one image coordinate system to
another. This mapping can be subject to image distortion due to the telescope’s FoV being much
narrower than the finder scope’s. First, the bore sights are aligned, so the detections in Figure 19, in
Appendix A, will be centered. The telescope is pointed to an area near the RSOs location. Briefly,
a static image is taken to compute the linear mapping registering the telescope’s detections in the
finder scope’s FoV. Then, the telescope rate-tracks an RSO and captures images, obtaining astro-
metric information from the wide FoV sensor, and uses the a-priori defined mapping to obtain the
corresponding right-ascension and declination for detections in the telescope image. This removes
the need to run astrometry on the telescope images. Additionally, solving astrometry on the finder
scope is faster due to increased star detections.

The mapping is assumed to be a linear transformation H , which can be identified using the
telescope detections expressed in each frame’s coordinate system as follows:

H

x1 x2 ... xn
y1 y2 ... yn
1 1 ... 1

tele. =

x1 x2 ... xn
y1 y2 ... yn
1 1 ... 1

fin. (34)

Where the superscript on the right-hand side indicates the vectors are expressed in the finder
scope’s coordinate system. Thus, H maps telescope coordinates to finder scope coordinates. This
operation, known as point-matching, uses least squares and the right-pseudo inverse to form:

HQ = P

H = QP T (PP T )−1
(35)

The linear transformation H is then used to forego star detection in the telescope’s images. The
GM-PHD multi-object tracking algorithm is used to track RSOs in the telescope images, imple-
mented in pixel-space. Once a measurement is obtained, the pixel-coordinates of the RSO are
mapped to the finder scope’s pixel coordinates. Since the finder scope image is solved with as-
trometry, the RSO’s topocentric right-ascension and declination measurement is obtained. These
measurements are fed to a UKF to update inertial position and velocity estimates of the RSO. These
estimates need to be accurate enough to quantify the evidence for the anomaly hypothesis. Figure
5 shows the GM-PHD algorithm tracking ANIK G1 in a telescope image. The green dot is ANIK
G1, the blue dots are other GEO satellites with similar pixel dynamics, and the red dots are streak
detections. The corresponding finder scope image is visible in Figure 11, in Appendix A.

For the current implementation of JER, it is assumed that the object association problem, when
updating the state estimator, has been correctly solved. A measurement gating approach is used to
discriminate which measurements are used to update the RSO estimates.
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Figure 5: GM-PHD Tracking ANIK G1 - Oct. 31, 2018 2:08:03 UTC

SCENARIO DEFINITION

The main objective of this paper is to empirically validate and expand the JER algorithm’s ca-
pabilities. The case and complexity to which JER is subjected relies heavily on the RSOs that are
considered in the experiment. The empirical validation was posed to be challenging and relevant
to the SSA community at large. Many important RSOs of interest lie in geostartionary Earth orbit
(GEO) due their cost and impact on civil and commercial infrastructure. As such, a number of
satellites in this orbital regime are considered.

A total of 3 GEO satellites are selected, namely, ANIK G1, ANIK F2, and GOES 14. GOES 14
performs East-West station keeping maneuvers only. ANIK F2 uses continuous thrust capabilities
and ANIK G1 performs North-South and East-West station keeping. These three objects are active
and use different kinds of maneuvers periodically, which makes them suitable objects to consider
for the anomaly and custody hypotheses. Additionally, the 3 GEO satellites adequately represent the
broader GEO satellite population, and are thus good candidates for validating the presented tasking
approach.

RESULTS

The obtained results are from an observation campaign on Oct. 30, 2018, during Atlanta’s GEO
glint season, providing adequate conditions to detect and track GEO satellites. A time-horizon of
two hours is given to the JER algorithm, though the algorithm was able to resolve the hypotheses
in less than an hour. The action intervals were fixed and 3 minutes long. A total of 16 actions
were taken in the demonstration, totaling up to 48 minutes of observation time. Every satellite was
resolved as nominal since the deviations with respect to their nominal TLE trajectories were small
in magnitude. Though the objective of the JER approach is not to minimize the covariance of the
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satellite estimates, the estimates do need to be accurate enough to quantify the anomaly and cus-
tody related evidence. This constrains the telescope action interval duration such that measurement
updates reduce the overall estimate covariance.

Table 3 shows the deviation of the state estimates with respect to the TLE nominal states at the
final time of the demonstration. It can be seen that ANIK G1 and GOES 14 are very close to the
nominal trajectory, off by 4.17 and 3.19 km, respectively. This is expected given that the TLE was
updated that day. Though the mean estimate for ANIK F2 deviated by 12.99 km in magnitude,
since this deviation lies within the Gaussian region given by Eqn. 23, the RSO was resolved to
be nominal. Table 3 also demonstrates that the differences between the nominal trajectory and
estimated velocities are small, on the order of 10−4 and 10−5km/s, well inside the nominal region.
The estimated state standard deviations can be seen in Figures 12 - 17 in Appendix A. These plots
also show when the estimates of each RSO were updated along the time-horizon. The covariances
decrease over time when measurement updates occur. Between observations, the integration of the
process noise results in increased standard deviations. The final covariances are on the order of
10−1km in inertial position and 10−4km/s in inertial velocity.

Table 3: Estimate Deviation from TLE at Final Measurement Update

RSO ex ey ez eẋ eẏ eż
km km km km/s km/s km/s

ANIK G1 1.206 0.9063 3.889 -2.056E-4 -2.037E-4 6.909E-4
ANIK F2 0.066 2.299 -12.794 -1.266E-4 4.774E-5 -1.540E-4
GOES 14 0.521 1.473 -2.781 -1.327E-4 -1.344E-4 -4.4356E-5

The receding-horizon optimal schedule that the JER algorithm commanded is visible in Figure 6.
At the beginning of each action time, JER solves for the optimal sequence and implements the
actions visible in the schedule. All of the actions commanded the telescope to ”track” the nominal
trajectories of the corresponding RSOs. Each tab indicates a single action taken by the GT-SORT.
All of the RSOs were observable and visible since they did not enter the Earth’s shadow.

In Figure 6, the blue rectangles indicate that the telescope was idle for those particular time-steps.
As mentioned in the previous section, future JER action sequences are contingent on the evidence
received and on the resulting BPAs formed. As such, it is iterative and the evidence provides feed-
back to the algorithm on how to minimize the total entropy of the frames of discernment. This
schedule plot shows how the JER algorithm switches back and forth between the 3 GEO satel-
lites. After roughly 48 minutes, the hypotheses are resolved and therefore the telescope becomes
idle. Since the belief in any of the custody hypothesis never increased beyond the threshold, no
reachability set search was triggered for this case.
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Figure 6: GTSORT Optimal Action Sequence (Schedule)

Figure 7: ANIK F2 Belief and Plausibility vs. Time
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Figure 8: GOES 14 Belief and Plausibility vs. Time

Figure 9: ANIK G1 Belief and Plausibility vs. Time
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Figure 10: J-S Entropies Over Time

The information contained in the resulting BPAs are visible in Figures 7 - 8. The singleton
propositions of the frames of discernment are visible along the y-axis of each subplot. The belief
and plausibility of each proposition over time can be seen for each RSO in the experiment. Belief
and plausibility can be interpreted as the lower and upper bounds of a proposition’s probability. As
the belief in the nominal and custody hypotheses increases for all of the RSOs, the plausibility of
the propositions remains 1. The lower bound effectively increases until it meets the upper bound,
resulting in hypothesis resolution. Conversely, the degree of belief (or support) in the anomalous
and no custody propositions remains zero for the whole interval since no evidence is gathered that
supports those propositions. Increasing belief in the nominal and custody propositions results in
decreased plausibility of the anomalous or no custody hypotheses, which is evident for every RSO.

As the belief in a particular proposition of the frame of discernment increases, the J-S entropy is
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expected to decrease, since the hypotheses are incrementally being resolved. The total uncertainty
in the system, in terms of conflict and non-specificity, is being driven to zero. This suggests that
a BPAs belief mass is increasingly being given to a singleton proposition in the frames of discern-
ment, which is directly equivalent to resolving (answering) the hypothesis. This is also visible in
Figure 10, which shows how the entropies of each hypothesis decrease over time. The solid black
line is the J-S entropy of each hypothesis and the dashed green line represents the acceptable resolu-
tion threshold for the experiment. Naturally, all of entropies for the custody and anomaly hypotheses
of each RSO decay below the resolution threshold, set at 0.05. The entropies of each hypothesis
decrease at different times as a result of actions being taken for each RSO at different times.

CONCLUSION

This paper presented an application and extension of the JER by considering the custody and
anomaly hypotheses and interfacing the algorithm with the GT-SORT. A reachability search action
was incorporated into the algorithm in case there was a loss of custody of an object. A robust tele-
scope mount controller, UKF estimator, and GM-PHD object tracking algorithm are implemented
to resolve the anomaly and custody hypotheses correctly. An empirical validation was completed
using 3 GEO satellites in real-time on October 30, 2018. Custody was maintained and the anomaly
hypotheses were resolved as nominal for all of the investigated RSOs. The predictive JER sensor
tasking algorithm successfully acquires and processes pieces of evidence using DS theory to resolve
hypotheses in a timely manner. The results of this paper are promising and show a working proof
of concept for hypothesis-based sensor tasking using evidential reasoning.

Future work includes handling a few limitations with the current framework. It is of interest
to increase the number of objects that the algorithm can handle to better understand the algorithms
quantitative capabilities. The algorithm also needs to be tested when abnormal behaviors are present
to evaluate its ability to handle anomalies and false-alarm. Additionally, a 3D-axis attitude stabilized
hypothesis will be incorporated in the future for particular RSOs. Another demonstration is planned
with the proposed improvements in the first quarter of 2019.
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APPENDIX A

Figure 11: Sample Finder Scope Image Whilst Tracking ANIK G1
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Figure 12: ANIK G1 Position Estimate Covariances

Figure 13: ANIK G1 Velocity Estimate Covariances
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Figure 14: ANIK G1 Velocity Estimate Covariances

Figure 15: ANIK G1 Velocity Estimate Covariances
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Figure 16: ANIK G1 Velocity Estimate Covariances

Figure 17: ANIK G1 Velocity Estimate Covariances
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Figure 18: Rokinon Finder Scope

Figure 19: Object Registration in the Finderscope and Telescope
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