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Introduction

Snapchat is a camera company:
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Introduction

We have over 2000 metrics measuring our customers’ engagement
with the app (engagement metrics: active days, session time, #chats,
#snaps, #story views, #story posts, · · · ), together with the app’s
performance (latency metrics: camera load latency, page load
latency, etc.).
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Experimentation

In A/B tests, we measure changes in engagement at mean using
two-sample t-test for each metric.

Each user contributes exactly one data point, since randomization
units are also users, they can be considered i.i.d.
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Background

For performance metrics, the industry standard is to measure event
level QTE (quantile treatment effects), most notably at P50 and P90.
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Challenges

• each user contributes multiple events, where they are no longer
independent. Highly engaged users would contribute more data
points, whereas rarely engaged users would contribute less.
So event level performance metrics overweight power users.
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Challenges

• Given such user level dependency, delta-method is the currently
wide-adopted approach in calculating QTE at given quantiles, it’s
cumbersome to generalize to a continuous range. For example,
in order to calculate QTE at P50, each user i as Pi event
contributing to the quantile and have within user correlation, so:

Yn(x) =
Z1 + · · ·+ Zn
P1 + · · ·+ Pn

Where Z is the number of events greater than P50 for each user.
So by delta method,

Var(Yn(x)) =
1
n

(
Var(Z)
P̄2

+
Var(P)Z̄2

P̄4
− 2 Z̄

P̄3
Cov(Z,P)

)
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Challenges

• We further need f(x) term in variance calculation at quantiles.
However, we have little guidance on density estimation’s
bandwidth choice, which greatly affects the final result.
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Challenges

Furthermore, QTE at the median and the 90-th quantile are
sometimes not enough to give experimenters the whole picture,
especially when the significance or directions do not agree, or when
heterogeneous treatment effect (HTE) is present for different devices
with high and low overall performances.
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CONQ: Main Contributions

• A scalable and theoretically sound method that can provide QTE
with ∆% p-values and CIs at arbitrary range of quantile
locations simultaneously.

• Circumvents the issue of density estimation and bandwidth
choice altogether, improve accuracy of delta-method by
log-transformation for percentage changes.

• Validation of the method on real experiments at Snap Inc., which
shows consistency with existing P50 and P90 results, and stable
performance across various quantile locations.
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Methodology



Sample Quantiles

CLT for i.i.d. sample quantiles
For i.i.d. samples X1, · · · , Xn, the sample p-th quantile ξn,p is
asymptotically normal:

√
n (ξn,p − ξp) → N

(
0, p(1− p)

f(ξp)2

)

However, for performance metrics, each user can contribute multiple
data-points (where itself is another r.v. measuring engagement), and
observations are no longer i.i.d.; e.g., a power Snapchat user’s latency
events would be highly correlated with each other given if the user
uses a single iPhone 12.
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Sample Quantiles

The industry standard is to use
the delta-method to
approximate the numerator in
the variance term [2, 4] as
mentioned before.
Yet we still have f(ξp) to
estimate, with kernel density
estimation as the standard
technique. However, it’s
extremely sensitive to the choice
of bandwidth h.

f̂h(x) =
1
nh

n∑
i=1

K
(
x− xi
h

)
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Kernel Density Bandwidths

Here is an example on a typical performance metric measuring the
latency on starting the Discover section inside the Snapchat app. The
study improved P50 latency from 911.991 to 908.173 with a p-value of
0.044 using the recommended bandwidth choice in [4]. However:

kernel density estimator’s bandwidth ∆% p-value
0.002 1.08e-34
0.01 0.0125
0.02 0.044

normal reference rule1 0.352

1[5], chosen as hn = 1.06min{s, IQR/1.34}/n1/5 (IQR inter-quartile range, s is sample
standard deviation and n is sample size)
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Bahadur Representation

Luckily, we do have a relationship between quantiles and the CDF
(even for some dependent cases under regularity conditions [7]):

ξn,p = ξp +
p− Fn(ξp)
f(ξp)f(ξp)f(ξp)

+ Oa.s.[n−3/4(log n)1/2(log log n)1/4]
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i.i.d. samples to dependent samples

i.i.d. samples

√
n (ξn,p − ξp) → N

(
0, p(1− p)

f(ξp)2

)
⇒ p− Fn(ξp) → N

(
0, p(1− p)

n

)

dependent samples

ξn,p − ξp → N
(
0, ννν

f(ξp)2

)
⇒ p− Fn(ξp) → N (0, ννν)
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Woodruff Confidence Interval

Woodruff [6] further proposed the empirical CI for quantiles by
inverting the usual confidence intervals for the distribution function:

Let ξ̂Lp = inf
{
t : Fn(t) ≥ p− zα/2ν1/2ν1/2ν1/2[Fn(ξp)]

}
,

ξ̂Up = inf
{
t : Fn(t) ≥ p+ zα/2ν1/2ν1/2ν1/2[Fn(ξp)]

}
, then

P
(
ξ̂Lp ≤ ξp ≤ ξ̂Up

)
≈ 1− α.

Note: Woodruff CI need not be symmetric against ξp, and especially
so at large or small value of p. So we choose max{ξ̂Up − ξ̂p, ξ̂p − ξ̂Lp} as
conservative estimate of the standard error.
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Overall Idea

So to get QTE for performance metrics, we

• shift our focus from sample quantiles to empirical distributions,
which avoids density estimation

• estimate variance term using bootstrap to circumvent
dependency

• appeal to Woodruff CI to get conservative estimates of the
standard errors for both control and treatment

•
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Balanced BLB (Poorman’s Bootstrap) for CDF

In order to estimate ννν , which is the key quantity for conducting
point-wise statistical inference using the aforementioned paradigm,
we propose a balanced poorman’s version of the famed
Bag-of-Little-Bootstrap (BLB) [3] procedure on the CDF.

• So instead of bootstrapping on users which is computationally
extensive, we bootstrap on bucketized aggregated summary
statistics.

• Events that belong to the same user are in the same bucket to
ensure validity.
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Step 1: log-transformation

Due to the non-negative nature of latency metrics and quantile’s
invariance to monotone transformation [1], we have:

log ξf(x)(p) = ξf(log x)(p), ∀0 < p < 1.

We do this to make delta method more appropriate for Taylor
expansion, and also reduce the overall unique value of log-latency
metric (after rounding).
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Step 1: log-transformation

This ensures that we can get back the QTE on the original metric X by
simply taking the exponent, and by delta-method, we also have:

variance on ∆% between control and treatment at p-th quantile(
Var

(
ξTf(log x)(p)

)
+ Var

(
ξCf(log x)(p)

))(ξTf(x)(p)
ξCf(x)(p)

)2

where the quantity in the first bracket can be estimated separately
using our bootstrapping procedure.
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Step 2: bootstrapping on buckets

• round log-transformed metrics into desired precision (2 digits
for Snap), X̃.

• split N users together with their events into s subsets (s = 100
for Snap), and for each bucket, record the unique metric values
and their corresponding aggregated counts.
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Step 2: bootstrapping on buckets

• randomly permute the long vector

VVV =

 1, · · · , 1︸ ︷︷ ︸
B repetition

, 2, · · · , 2︸ ︷︷ ︸
B repetition

, · · · · · · , s, · · · , s︸ ︷︷ ︸
B repetition


and then split VVV into B vectors of length s, and treat each vector
vvvi, i = 1, · · · ,B as one bootstrap sample on the buckets. For
each sample, count how many 1, · · · , s each appears, and weight
corresponding ci,j by how many times i-th bucket appears in vvvi,
this would give us the empirical cdf at all unique log-scaled
values X̃j, j = 1, · · · , K.
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Step 3: calculate bootstrapped SE for empirical CDF

Using all bootstrap samples, estimate the standard deviation of
empirical cdf at all X̃j (denoted as Fn,i(X̃j), i = 1, · · · ,B) as well, which
would approximate v at Fn(X̃j):

Var
(
Fn(X̃j)

)
≈ B−1

B∑
i=1

(
Fn,i(X̃j)− B−1

B∑
k=1

Fn,k(X̃k)
)2

:= ν̂Bn [Fn(X̃j)].
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Step 4: appeal to Woodruff CI and convert to SE on quantiles

Let ξ̂LFn(X̃j) = inf

{
t : Fn(t) ≥ Fn(X̃j)−

√
ν̂Bn [Fn(X̃j)]

}
,

ξ̂UFn(X̃j)
= inf

{
t : Fn(t) ≥ Fn(X̃j) +

√
ν̂Bn [Fn(X̃j)]

}
,

then let ŜE(X̃j) = max
{
X̃j − ξ̂LFn(X̃j)

, ξ̂UFn(X̃j)
− X̃j

}
.
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Step 5: calculate QTE on a pre-set grid

For a set of interested quantile locations, e.g. 20% to 99% with step
size 1%, we can linearly interpolate the variance term for control and
treatment using ŜE(X̃).
QTE:

• ∆% at grid:
∆i% =

(
exp

(
FT,−1
n (gridi)

)
− exp

(
FC,−1
n (gridi)

))
/ exp

(
FC,−1
n (gridi)

)
× 100%;

• SE for∆% at grid:

ŜE(∆i%) =

√
ŜE

(
FC,−1
n (gridi)

)2
+ ŜE

(
FT,−1
n (gridi)

)2
×

exp
(
FT,−1
n (gridi)

)
exp

(
FC,−1
n (gridi)

) ;
• ∆% p-value at grid: pi = 2× Φ

(
−

∣∣∣∣ ∆i%
ŜE(∆i%)

∣∣∣∣) ;

• ∆% confidence interval at level 1− α at grid:
CIi = [∆i%− zα/2ŜE(∆i%),∆i%+ zα/2ŜE(∆i%)].
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Evaluation



Example: overall

Going back to our motivating example, where P50 and P90 disagrees:
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Example: device cluster breakdown

Further breakdown the results by device clusters (low-end to
high-end devices), surfacing HTE:
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Comparison with the delta-method
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A/A tests

Here we pick A/A tests (810 treatment and control pairs) at Snap, and
run BH procedure on them at nominal FDR level 0.05, 0.1, 0.2, the
number of rejections are shown below:

0.05 0.1 0.2
P20 0 (0%) 0 (0%) 0 (0%)
P30 0 (0%) 0 (0%) 0 (0%)
P40 0 (0%) 0 (0%) 0 (0%)
P50 0 (0%) 0 (0%) 0 (0%)
P60 0 (0%) 0 (0%) 0 (0%)
P70 0 (0%) 0 (0%) 0 (0%)
P80 0 (0%) 0 (0%) 1 (0.12%)
P90 0 (0%) 0 (0%) 5 (0.62%)
P95 2 (0.25%) 2 (0.25%) 8 (0.99%)

28



Other Projects

• Clustering Users at Snapchat demonstrate distinct in-app
engagement activities, how can we cluster them into personas
where we can better understand our customers?

• Causal Inference What’s the causal relationship between app
performance metrics to user engagement metrics? e.g., by
decreasing my app latency by X%, how much improvement in
engagement (say snap sending) can we expect?

• FDR Control With so many metrics being tested sequentially and
simultaneously, can we efficiently control false positives and
false negatives?
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Questions?
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