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Introduction

Introduction

Dempster’s combination rule is the centerpiece of the Dempster-Shafer (D-S) theory of belief functions. In
practice, Dempster’s combination rule should only be used to combine distinct belief functions.
What constitutes distinct belief functions?
We have an answer in Dempster’s multi-valued semantics for belief functions.
In practice, we don’t associate multi-valued functions with belief functions.
The idea of distinct belief functions corresponds to no double-counting of uncertain knowledge semantics
of conditional independence.
Although we discuss distinct belief functions in the D-S theory, the discussion is generally valid in many
uncertainty calculi, including probability theory, possibility theory, and Spohn’s epistemic belief theory.
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Basics of D-S belief function theory

Basics of D-S Belief Function Theory

Static: We represent knowledge using either:

basic probability assignment (BPA) m

commonality function (CF) Q

Dynamic: We make inferences using the following operators:

Marginalization rule
Dempster’s rule of combination
Removal (inverse of combination)
Inference: Given a set of distinct belief functions (BPA, BF, PF, CF) representing knowledge of the
domain and all evidence, we would like to find the marginals of the joint belief function for some variables
of interest.
The joint belief function is obtained by combining all belief functions using Dempster’s rule of combination.
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Basic Probability Assignments

Notation:

Suppose V denotes a finite set of variables.
For each X ∈ V, ΩX denotes a finite set of states of X.
Let r, s, t, etc., denote subsets of V.
For every non-empty subset s ⊆ V,

Ωs = ×X∈sΩX

denotes the states of s.
Let 2Ωs denote the set of all subsets of Ωs
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Basic Probability Assignments

Basic Probability Assignment:

A basic probability assignment (BPA) m for s is a function m : 2Ωs → [0, 1] such that:

m(∅) = 0, (1)∑
∅̸=a⊆Ωs

m(a) = 1. (2)

s is called the domain of m.
Subsets a ⊆ Ωs such that m(a) > 0 are called focal elements of m.
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Basic Probability Assignments

Consider probability mass function (PMF) for A: PA(a) = 0.01, PA(ā) = 0.99.
PA can be represented by BPA mA for A as follows: mA({a}) = 0.01, mA({ā}) = 0.99
If all focal elements of m are singleton subsets, then m is called Bayesian. BPA mA for A is Bayesian.
If we have only one focal element (with probability 1), then we say m is deterministic
Consider E (either T or L). E = e iff T = t or L = l.
Consider a BPA m for {T, L, E} as follows:

m({(t, l, e), (t, l̄, e), (t̄, l, e), (t̄, l̄, ē)}) = 1

Then, m is deterministic.
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Basics of D-S Belief Function Theory

Suppose m is a BPA for s. We say m is vacuous if m is deterministic with focal set Ωs, i.e., m(Ωs) = 1.
Consider BPA mA for A such that mA(ΩA) = 1. m is vacuous.
Consider BPA mA for A such that mA({a}) = 0.5, mA({ā}) = 0.5. This is a Bayesian, non-vacuous BPA
for A.
In D-S belief function theory, we can distinguish between equally-likely states and vacuous knowledge.
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Commonality Functions

Commonality Functions:

A commonality Qm for s corresponding to BPA m for s is a function Qm : 2Ωs → [0, 1] such that

Qm(a) =
∑

b⊆Ωs:b⊇a
m(b) (3)

Qm(a) represents the probability mass that could move to every state in a.
It follows from Eq. (3) that 0 ≤ Qm(a) ≤ 1.
It follows from Eqs. (1)-(3) that Qm(∅) = 1.
Example: Suppose BPA m for T is as follows:

m(∅) = 0, m({t}) = 0.0005, m({t̄}) = 0.9405, m(ΩT ) = 0.0590.

Then,
Qm(∅) = 1, Qm({t}) = 0.0595, Qm({t̄}) = 0.9995, Qm(ΩT ) = 0.0595.
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Commonality Functions
BPA m, CF Qm has the same information.
Given CF Q for s, we can recover corresponding m as follows:

mQ(a) =
∑

b∈2Ωs : b⊇a

(−1)|b\a|Q(b). (4)

Thus, it follows that Q : 2ΩX → [0, 1] is a well-defined CF iff for all ∅ ≠ a ∈ 2Ωs

Q(∅) = 1, (5)∑
b∈2Ωs : b⊇a

(−1)|b\a|Q(b) ≥ 0, and (6)

∑
∅̸=a∈2Ωs

(−1)|a|+1Q(a) = 1. (7)

The left-hand side of Eq. (6) is mQ(a), and the left-hand side of Eq. (7) can be shown to be∑
∅̸=a∈2ΩX mQ(a). Eq. (7) can be regarded as a normalization condition for a CF. If we have a function

Q : 2Ωs → [0, 1] that satisfies Eqs. (5) and (6), but not (7), then we can divide each of the values of the
function for non-empty subsets in 2ΩX by K =

∑
∅̸=a∈2Ωs (−1)|a|+1Qm(a), and the resulting function will

then qualify as a CF.
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Commonality Functions

In some cases, we could have a CF that doesn’t satisfy Eq. (6) but does satisfy Eqs. (5) and (7). In such
cases, we will call such CFs pseudo-CFs. If we convert a pseudo-commonality function to a BPA using Eq.
(4), then such a BPA will have negative masses that add to 1. We will call such BPAs pseudo-BPAs.
For the vacuous BPA ιs for s, the CF Qιs

corresponding to BPA ιs is given by Qιs
(a) = 1 for all a ∈ 2Ωs .

If m is a Bayesian BPA for s, then Qm is such that Qm(a) = m(a) if |a| = 1, and Qm(a) = 0 if |a| > 1.
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Marginalization Rule

Marginalization rule

Marginalization in belief function theory is addition.
Projection of states: If x ∈ Ωs, and X ∈ s, then x↓s\{X} is the state of s \ {X} obtained from x by
dropping the state of X.
Projection of subset of states: If a ∈ 2Ωs , then a↓s\{X} is

a↓s\{X} = {x↓s\{X} : x ∈ a}

Definition (Marginalization rule)
If m is a bpa for s, and X ∈ s, then m↓s\{X} is a bpa for s \ {X} defined as follows:

m↓s\{X}(a) =
∑

b∈2Ωs : b↓s\{X}=a

m(b)

for all a ∈ 2s\{X}.
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Marginalization Rule

Consider the deterministic BPA m for {T, L, E} as follows:

m({(t, l, e), (t, l̄, e), (t̄, l, e), (t̄, l̄, ē)}) = 1

Then, m↓{T,L} is the BPA for {T, L} given by

m↓{T,L}({(t, l), (t, l̄), (t̄, l), (t̄, l̄)}) = m↓{T,L}(Ω{T,L}) = 1.

Notice that m↓{T,L} is the vacuous BPA for {T, L}.
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Marginalization Rule

The definition of marginalization of BPA functions has the following properties:
(Domain) If m is a BPA for s, and X ∈ s, then m↓s\{X} is a BPA for s \ {X}.
(Order does not matter) If m is a BPA for s, X, Y ∈ s, then

(m↓s\{X})↓s\{X,Y } = (m↓s\{Y })↓s\{X,Y }.
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Dempster’s Combination Rule
The combination rule in the D-S theory of belief functions is Dempster’s rule, which Dempster called the
“product-intersection” rule.
The product of the BPA masses is assigned to the intersection of the focal elements, any mass assigned to
the empty set is discarded, and the remaining masses re-normalized.

Definition (Dempster’s combination rule)
Suppose m1 is a BPA for s1, m2 is a BPA for s2, and m1 and m2 are distinct. Then, m1 ⊕ m2 is a BPA for
s1 ∪ s2 such that for all a ∈ 2Ωs1∪s2

(m1 ⊕ m2)(a) = K−1
∑

a1∈2Ωs1 ,a2∈2Ωs2 :(a1×Ωs2\s1 )∩(a2×Ωs1\s2 )=a

m1(a1) m2(a2), (8)

where K is a normalization constant given by

K =
∑

a1∈2Ωs1 ,a2∈2Ωs2 :(a1×Ωs2\s1 )∩(a2×Ωs1\s2 )̸=∅

m1(a1) m2(a2). (9)
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Dempster’s Combination Rule

Dempster’s combination rule can also be described using commonality functions.
In terms of CFs, Dempster’s rule is pointwise multiplication of commonality functions.

Theorem (Shafer 1976)
Consider two distinct BPAs m1 for s1 and m2 for s2, and let Q1 and Q2 denote the corresponding
commonality functions. Let CF Q1 ⊕ Q2 correspond to BPA m1 ⊕ m2. Then, for all ∅ ≠ a ∈ 2Ωs1∪s2

(Q1 ⊕ Q2)(a) = K−1Q1(a↓s1) Q2(a↓s2), (10)

where K is a normalization constant defined as follows:

K =
∑

∅̸=a∈Ωs1∪s2

(−1)|a|+1Q1(a↓s1) Q2(a↓s2). (11)

The normalization constant in Eq. (11) is precisely the same as in Eq. (9).
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Dempster’s Combination Rule

If m ⊕ m = m, we say m is idempotent. For example, if m is deterministic, m is idempotent.
In general m ⊕ m ̸= m.
Thus, in combining, e.g., BPAs m1 and m2 by Dempster’s rule, it is important that m1 and m2 are
distinct pieces of evidence (to avoid double-counting of non-idempotent knowledge).
Dempster’s rule satisfies the following properties:

(Domain) If m1 is a BPA for s1 and m2 is a BPA for s2, then m1 ⊕ m2 is a BPA for s1 ∪ s2.
(Commutative) m1 ⊕ m2 = m2 ⊕ m1
(Associative) m1 ⊕ (m2 ⊕ m3) = (m1 ⊕ m2) ⊕ m3

(Local computation) Marginalization and Dempster’s rules satisfy the following property: If m1 is a BPA
for s1, m2 is a BPA for s2, X ∈ s1, and X /∈ s2, then:

(m1 ⊕ m2)↓(s1∪s2)\{X} = m
↓s1\{X}
1 ⊕ m2
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Conditional Independence

Conditional independence (CI) in the D-S theory is similar to CI in probability theory [Dawid 1979, Shenoy
1994].

Definition (Conditional Independence)
Suppose V denotes the set of all variables, and suppose r, s, and t are disjoint subsets of V. Suppose m is a
joint BPA for V. We say r and s are conditionally independent given t with respect to BPA m, denoted by
r⊥⊥ms|t, if and only if m↓r∪s∪t = mr∪t ⊕ ms∪t, where mr∪t is a BPA for r ∪ t and ms∪t is a BPA for s ∪ t,
and mr∪t and ms∪t are distinct.

The definition above uses factorization semantics of CI. This is useful in graphical models.
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Conditional BPAs

In directed graphical models, we have conditional BPAs.

Definition (Conditional BPAs)
Suppose r and s are disjoint subsets of variables and suppose r′ ⊂ r. Suppose ms|r′ is a BPA for r′ ∪ s. We
say ms|r′ is a conditional BPA for s given r′ if and only if

1 (ms|r′ )↓r′
is a vacuous BPA for r′, and

2 for any BPA mr for r, mr and ms|r′ are distinct. Thus, mr ⊕ ms|r′ is a BPA for r ∪ s.

We call s the head of the conditional ms|r′ , and r′ the tail.
Using the definition of CI, mr and ms|r′ are distinct if and only if s⊥⊥mr⊕ms|r′ (r \ r′)|r′.
In a directed graphical model, we have a conditional associated with each variable X. The head of the
conditional is X, and the tail consists of the parents of X.
In graphical models, the joint is constructed from the conditionals. We don’t start with a joint. The
definition of a conditional belief function in Definition 5 reflects this fact.
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Conditional BPAs

Where do conditional BPAs come from? One way is to use Smets’ conditional embedding.

Suppose we have some knowledge about Y in the context X = x encoded as BPA mYx for Y .
The knowledge of Y encoded in BPA mYx for Y is valid only in the case X = x.
Using Smets’ conditional embedding, we convert the BPA mYx for Y to a BPA mY |x for {X, Y } as
follows:

Definition (Smets’ conditional embedding)
mY |x for {X, Y } is defined as follows:

mY |x(({x} × b) ∪ ((ΩX \ {x}) × ΩY )) = mYx(b)

for each focal element b of mYx
.
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Conditional BPAs

An Example

Suppose X and Y are variables with ΩX = {x, x̄} and ΩY = {y, ȳ}.
If X = x, assume mYx

is as follows:

mYx
({y}) = 0.8,

mYx
(ΩY ) = 0.2.

Then mY |x is a BPA for {X, Y } as follows:

mY |x({(x, y), (x̄, y), (x̄, ȳ)}) = 0.8,

mY |x(ΩX,Y ) = 0.2.
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Conditional BPAs

The BPA mY |x for {X, Y } obtained from mYx
by Smets’ conditional embedding has the following

property.
1 (mY |x)↓X is a vacuous bpa for X. Thus, it is a conditional BPA for Y given X.
2 Suppose mX=x is a bpa for X as follows: mX=x({x}) = 1. Then,

(mY |x ⊕ mX=x)↓Y = mYx .

P. P. Shenoy (KU) On Distinct Belief Functions April 21, 2023 24 / 60



Basics of D-S belief function theory Conditional BPAs

Conditional BPAs

Consider mY |x:

mY |x({(x, y), (x̄, y), (x̄, ȳ)}) = 0.8,

mY |x(ΩX,Y ) = 0.2.

It is clear that m↓X
Y |x is vacuous for X.

Consider mX=x ⊕ mY |x:
{(x, y), (x̄, y), (x̄, ȳ)} Ω{X,Y }

mX=x ⊕ mY |x 0.8 0.2
{(x, y), (x, ȳ)} {(x, y)} {(x, y), (x, ȳ)}

1 0.8 0.2

Thus, (mX=x ⊕ mY |x)({(x, y)}) = 0.8, (mX=x ⊕ mY |x)({(x, y), (x, ȳ)}) = 0.2.
Thus, (mX=x ⊕ mY |x)↓Y = mYx

.
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Conditional BPAs

Another source of conditionals is deterministic knowledge
Consider the Chest Clinic example. E = e if and only if (T = t) ∨ (L = l). This can be represented by a
deterministic BPA m for {T, L, E} as follows:

m({(t, l, e), (t, l̄, e), (t̄, l, e), (t̄, l̄, ē)}) = 1.

Notice that m is a conditional BPA for E given {T, L} as m↓{T,L} is vacuous.
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Removal Operator

Suppose we construct a joint BPA mX,Y = mX ⊕ mY |X for (X, Y ).
Notice that (mX,Y )↓X = mX .
Starting from the joint BPA mX,Y , can we recover the conditional?
Yes! Using the removal operator [Shenoy 1994]
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Removal Operator

Definition (Removal)
Suppose mX,Y is a BPA for (X, Y ) such that mX,Y = mX ⊕ mY |X , where mX is a BPA for X, and mY |X is
a conditional for Y given X. Notice that m↓X

X,Y = mX . Let QX,Y and QX denote the CFs corresponding to
mX,Y and mX respectively. Then, the removal of QX from QX,Y , written as QX,Y ⊖ QX , is defined as follows:

(QX,Y ⊖ QX)(a) = K−1QX,Y (a)/Q(a↓X) (12)

for all a ∈ 2ΩX,Y , where K is a normalization constant defined by

K =
∑

∅≠a∈2ΩX,Y

(−1)|a|+1QX,Y (a)/Q(a↓X) (13)
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Removal Operator

It follows from Eq. (12) that for all a ⊆ ΩX,Y :

(QX,Y ⊖ QX)(a) = ((QX ⊕ QY |X) ⊖ QX)(a)
= QX(a↓X) QY |X(a)/QX(a↓X)
= QY |X(a)

Thus, the removal operator can recover the conditional from the joint.
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Distinct Belief Functions
Dempster’s multi-valued semantics for belief functions:

We have X1 for which we have a PMF P1 and multivalued mapping Γ1 : X1 → 2S1 \ ∅ that results in a
BPA m1 for S1.
We have space X2 for which we have a PMF P2 and multivalued mapping Γ2 : X1 → 2S1 \ ∅ that results
in a BPA m2 for S2.
m1 and m2 are distinct if and only if X1 and X2 are independent.
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Distinct Belief Functions

Dempster’s multi-valued semantics for belief functions:

In practice, not every belief function in a belief function model is associated with a multi-valued mapping.
Thus the definition of distinct belief function cannot be used directly in practice.
If we assume independence of variables X1 and X2 when they are not, then we double-count knowledge.
Thus, the spirit of Dempster’s definition is that two belief functions are distinct if, when combining them
using Dempster’s combination rule, we are not double-counting non-idempotent knowledge.
We will use this heuristic in discussing what constitutes distinct belief functions in practice.
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Directed Graphical Models

Notation:

A directed graph G is a pair G = (V, E), where V = {X1, . . . , Xn} denotes the set of nodes, and E
denotes the set of directed edges (Xi, Xj) between two distinct variables in V.
For any node X ∈ V, let PaG(X) denote {Y ∈ V : (Y, X) ∈ E}.
A directed graph G is said to be acyclic if and only if there exists a sequence of the nodes of the graph,
say (X1, . . . , Xn) such that if there is a directed edge (Xi, Xj) ∈ E then Xi must precede Xj in the
sequence. Such a sequence is called a topological sequence (as it depends only on the topology of the
directed graph).
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Directed Graphical Models

Definition (Belief-function directed graphical model)
Suppose we have a directed acyclic graph G = (V, E) with n nodes in V. A belief-function directed graphical
model (BFDGM) is a pair (G, {m1, . . . , mn}) such that BPA mi associated with node Xi is a conditional BPA
for Xi given PaG(Xi), for i = 1, . . . , n. A fundamental assumption of a BFDGM is that m1, . . . , mn are all
distinct, and the joint BPA m for V associated with the model is given by

m =
n⊕

i=1
mi. (14)

1 The assumption in the definition that all conditionals are distinct allows the combination in Eq. (14).
2 Given m, the joint BPA for V as defined in Eq. (14), it follows from the definition of CI that the following

CI relations hold. Suppose (X1, . . . , Xn) is a topological sequence associated with BFDGM
(G, {m1, . . . , mn}). Then for each Xi, i = 2, . . . , n, given PaG(Xi), Xi is conditionally independent of
{X1, . . . Xi−1} \ PaG(Xi).
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Directed Graphical Models

An Example: Captain’s Problem

A topological sequence: (W, F, L, M, D, R, S, A).
CI assumptions: L⊥⊥m{W, F}, M⊥⊥m{W, F, L}, D⊥⊥mW | {F, L, M}, R⊥⊥m{W, F, L, D} | M , etc.
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Directed Graphical Models

Consider the probabilistic graphical model:

The joint PMF P (X, Y ) = P (X) ⊗ P (Y |X), where ⊗ is pointwise multiplication followed by
normalization (Bayes’ rule).
P (X, Y )↓X = (P (X) ⊗ P (Y |X))↓X = P (X) ⊗ P (Y |X))↓X = P (X). Notice that P (Y |X))↓X is a
potential with all ones, a vacuous potential.
Assuming P (X) has no zeroes, P (X, Y ) ⊘ P (X) = (P (X) ⊗ P (Y |X)) ⊘ P (X) = P (Y |X), where ⊘ is
pointwise division followed by normalization.
There are no CI assumptions in this model.
Thus, P (X) and P (Y |X) are always distinct.
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Directed Graphical Models

Consider the probabilistic graphical model:

The joint PMF P (X, Y ) = P (X) ⊗ P (Y ).
The model assumes X⊥⊥P (X,Y )Y . Therefore P (Y |X)(x, y) = P (Y )(y) for all (x, y) ∈ ΩX,Y .
Thus, P (X, Y ) = P (X) ⊗ P (Y |X) = P (X) ⊗ P (Y ).
Assuming X⊥⊥P (X,Y )Y , the potentials P (X) and P (Y ) are distinct.
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Directed Graphical Models

Consider the probabilistic graphical model: , where X and Y are not independent.
Suppose Y = X.

Table: Comparing P (X, Y ) with P (X) ⊗ P (Y ) (assuming Y = X)

ΩX,Y P (X) P (Y |X) P (X, Y ) P (Y ) P (X) ⊗ P (Y )
(0, 0) 0.2 1 0.2 0.2 0.04
(0, 1) 0.2 0 0 0.8 0.16
(1, 0) 0.8 0 0 0.2 0.16
(1, 1) 0.8 1 0.8 0.8 0.64

The joint PMF P (X, Y ) = P (X) ⊗ P (Y ) as per the model is different from the true joint P (X, Y ).
Without the CI assumption of the model, the potentials P (X) and P (Y ) are not distinct. P (X) ⊗ P (Y )
results in double-counting of non-idempotent knowledge.
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Directed Graphical Models

Consider the probabilistic graphical model:

The joint PMF P (X, Y, Z) = P (X) ⊗ P (Y |X) ⊗ P (Z|Y ).
The model assumes Z⊥⊥P (X,Y,Z)X | Y .
With this CI assumption, the three potentials are distinct.
If the CI assumption is not valid, then P (Z|Y ) is not distinct from P (X) ⊗ P (Y |X).
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Directed Graphical Models

In the case of a belief-function directed graphical model, we have a model similar to the probabilistic case

The graphical model is associated with a set of CI assumptions.
The definition of CI in the D-S theory is similar to the one for probability theory (Dawid 1979, Shenoy
1994).
Associated with each variable X in the model, we have conditional for X given its parents.
Unlike the probabilistic case, some conditionals may not be known.
As in the probabilistic case, assuming the CI relations are valid, the BPAs in the model are distinct.
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Directed Graphical Models

Captain’s Problem (R. Almond, Graphical Belief Modeling, Chapman and Hall, 1995)
A ship’s captain is concerned about how many days his ship may be delayed before arrival at a destination.
The arrival delay is the sum of departure and sailing delays, A = D + S.
Delay in departure may be a result of maintenance (at most one day), delay in loading (at most one day), or
due to forecast of bad weather (at most I day).
Delay in sailing may result from bad weather (at most one day) and whether repairs may be needed at sea (at
most one day).
If maintenance is done before sailing, chances of repairs at sea are less likely.
Weather forecast says a small chance of bad weather (.2) and a good chance of good weather (0.6). The
forecast is 80% reliable.
Captain has some knowledge of loading delay and whether maintenance is done before departure.
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Directed Graphical Models

Variables
A (arrival delay), ΩA = {0, 1, 2, 3, 4, 5}.
D (departure delay), ΩD = {0, 1, 2, 3}.
S (sailing delay), ΩS = {0, 1, 2}.
L (is loading delayed?), ΩL = {t, f}.
F (weather forecast), ΩF = {b, g}.
W (actual weather), ΩW = {b, g}.
M (is maintenance done before sailing?), ΩM = {t, f}.
R (is a repair at sea needed?), ΩR = {t, f}.
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Directed Graphical Models

The Captain problem can be described by a causal directed acyclic graph (DAG) as follows:
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Directed Graphical Models

Conditional for F given W :

Forecast is 80% reliable
This piece of knowledge is represented by conditional BPA ϕ1 for F given W such that

ϕ1({(b, b), (g, g)}) = 0.8,

ϕ1(Ω{W,F }) = 0.2.
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Directed Graphical Models

Priors for L and M :

Loading is delayed with chance 0.3 and on schedule with chance 0.5.
This knowledge is modeled by BPA λ for {L}:

λ({t}) = 0.3,

λ({f}) = 0.5,

λ(Ω{L}) = 0.2.

No maintenance was done on the ship before departure
This piece of knowledge is represented by BPA µ for {M} such that

µ({f}) = 1.
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Directed Graphical Models

Conditional for D given {L, F, M}:

Loading delay, bad weather forecast, and maintenance each add one day to the departure delay
We model this piece of knowledge by conditional BPA δ for D given {L, F, M}:

δ({(f, g, f, 0), (t, g, f, 1), (f, b, f, 1), (f, g, t, 1), (f, b, t, 2), (t, g, t, 2), (t, g, f, 2), (t, b, t, 3)}) = 1.

Notice that δ↓{L,F,M} is vacuous for {L, F, M}.
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Directed Graphical Models

Conditional for R given M = t:

If maintenance was done before sailing, then the chances of repair at sea are between 10 and 30%. This is
represented by BPA ρM=t for R as follows:

ρM=t({t}) = 0.1,

ρM=t({f}) = 0.7,

ρM=t({t, f}) = 0.2.

After conditional embedding, ρ1 is a conditional BPA for R given M as follows:

ρ1({(t, t), (f, t), (f, f)}) = 0.1,

ρ1({(t, f), (f, t), (f, f)}) = 0.7,

ρ1(Ω{M,R}) = 0.2.

P. P. Shenoy (KU) On Distinct Belief Functions April 21, 2023 47 / 60



Distinct Belief Functions Directed Graphical Models

Directed Graphical Models

Conditional for R given M = f :

If maintenance was not done before sailing, then the chances of repair at sea are between 20 and 80%.
This is represented by conditional BPA ρM=f for R as follows:

ρM=f ({t}) = 0.2,

ρM=f ({f}) = 0.2,

ρM=f ({t, f}) = 0.6.

After conditional embedding, ρ2 is a conditional BPA for R given M as follows:

ρ2({(f, t), (t, t), (t, f)}) = 0.2,

ρ2({(f, f), (t, t), (t, f)}) = 0.2,

ρ2(Ω{M,R}) = 0.6.

ρ1 ⊕ ρ2 can be considered as a conditional BPA mR|M for R given M .

P. P. Shenoy (KU) On Distinct Belief Functions April 21, 2023 48 / 60



Distinct Belief Functions Directed Graphical Models

Directed Graphical Models

Conditional for S given {W, R}:

At least 90% of the time, bad weather and repair at sea each add one day to the sailing delay
We model this by conditional BPA σ for S given {W, R} such that

σ({(0, g, f), (1, b, f), (1, g, t), (2, b, t)}) = 0.9,

σ(Ω{S,A,R}) = 0.1

Notice that σ↓{W,R} is vacuous for {W, R}.
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Directed Graphical Models

Conditional for A given {D, S}:

Consider the piece of knowledge: Arrival delay is the sum of departure delay and sailing delay
We model this piece of knowledge by a deterministic conditional BPA α for A given {D, S} such that

α({(0, 0, 0), (0, 1, 1), (0, 2, 2), (0, 3, 3),
(1, 0, 1), (1, 1, 2), (1, 2, 3), (1, 3, 4),
(2, 0, 2), (2, 1, 3), (2, 2, 4), (2, 3, 5),

(3, 0, 3), (3, 1, 4), (3, 2, 5), (3, 3, 6)}) = 1.
Notice that α↓{D,S} is vacuous for {D, S}.
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Undirected Graphical Models
Notation:

An undirected graph G is a pair G = (V, E), where V = {X1, . . . , Xn} denotes the set of nodes, and E
denotes the set of undirected edges {Xi, Xj} between two distinct variables in V.
A clique in G is a maximal completely connected subgraph of G.
Given a variable X ∈ V, the Markov blanket of X, denoted by MBG(X), is {Y ∈ V : {X, Y } ∈ E}.

The UG on the left has four cliques with node sets: {X1, X2}, {X2, X3}, {X3, X4}, {X1, X4}.
MBG(X1) = {X2, X4}
The UG on the right has two cliques with node sets: {X1, X2, X3}, {X1, X3, X4}.
MBG(X1) = {X2, X3, X4}.
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Undirected Graphical Models

Definition (Belief-function undirected graphical model)
Suppose we have an undirected acyclic graph G = (V, E) with n nodes in V with cliques r1, . . . rk. A
belief-function undirected graphical model (BFUGM) is a pair (G, {m1, . . . , mk}) such that mi is a BPA for
clique ri. A fundamental assumption of a BFUGM is that m1, . . . , mn are all distinct, and the joint BPA m for
V associated with the model is given by

m =
k⊕

i=1
mi. (15)

1 The assumption in the definition that all conditionals are distinct allows the combination in Eq. (15).
2 Given m, the joint BPA for V as defined in Eq. (15), it follows from the definition of CI that the following

CI relations hold. For each Xi ∈ V, Xi⊥⊥mV \ ({Xi} ∪ MBG(Xi)) | MBG(Xi).
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Undirected Graphical Models

CI assumptions in BFUGMs:

For the BFUGM on the left: m = m12 ⊕ m23 ⊕ m34 ⊕ m14. This BFUGM has two CI assumptions:
X1⊥⊥mX3 | {X2, X4}, and X2⊥⊥mX4 | {X1, X3}. The first one follows from
m = (m12 ⊕ m14) ⊕ (m23 ⊕ m34). The second one follows from m = (m12 ⊕ m23) ⊕ (m34 ⊕ m14).
For the BFUGM on the right: m = m123 ⊕ m134 and 1 CI assumption: X2⊥⊥mX4 | {X1, X3}. This follows
from m = m123 ⊕ m134.

P. P. Shenoy (KU) On Distinct Belief Functions April 21, 2023 53 / 60



Distinct Belief Functions Undirected Graphical Models

Undirected Graphical Models
One source of undirected graphical models is the moralization of a directed graphical model (where we
marry parents and drop directions) [Lauritzen & Spiegelhalter 1988].
The BPAs associated with the cliques are the same as the conditionals associated with each variable or
some combination.
So, all BPAs associated with the cliques are distinct.
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Undirected Graphical Models

Communication network [Haenni-Lehmann 2002]
We have a grid of 44 = 8 + 9 + 10 + 9 + 8 communication nodes arranged in 12 columns and 5 rows
There are 68 links, and each link has 90% reliability
Nodes A and B are connected to the grid with links having 80% reliability
What is the marginal of the joint for {A, B}?

X13

X22
X33

X31
X42

X24
X35

X44

X53

X51

X55

X81
X92

X83

X94
X85 X105

X114

X123

X112
X103

X101
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Undirected Graphical Models

Definition (Non-informative BPAs)
Suppose m1 and m2 are two distinct BPAs for s1 and s2, respectively. We say m1 and m2 are mutually
non-informative if m↓s1∩s2

1 and m↓s1∩s2
2 are vacuous BPAs for s1 ∩ s2.

Intuitively, m1 doesn’t tell us anything about m2 and vice-versa.
If s1 and s2 are disjoint, then they are trivially non-informative to each other.

Definition (A set of non-informative BPAs)
A set of BPAs is non-informative if every pair of BPA from the set is mutually non-informative.
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Undirected Graphical Models

Consider the variables in the grid with 19 columns and five rows. Let X13 denote the variable in column 1,
row 3, and let X22 denote the variable in column 2 and row 2. Let Ω13 = {t13, f13}, and and let
Ω22 = {t22, f22}.
The BPA m13−22 associated with the edge between X13 and X22 is as follows:

m13−22({(t13, t22), (f13, f22)}) = 0.9,

m13−22(Ω13 × Ω24) = 0.1.

All BPAs in the model are similar to BPA m13−22.
BPAs m13−22 and m13−24 are mutually non-informative.
The set of all BPAs in the communication network example is non-informative.
Each BPA in this model models the reliability of the corresponding link between two nodes. Assuming the
reliability of each link is independent of the reliabilities of other links, we can infer that all BPAs in the
model are distinct.
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Summary & Conclusions

The main goal of this presentation is to discuss the notion of distinct belief functions in graphical models,
both directed and undirected. We start with the definition given by Dempster in his multi-valued
semantics of a BPA. In practice, this cannot be used as we don’t associate a multi-valued function with
each belief function in a model.
We use heuristics of no double-counting of non-idempotent knowledge to define distinct belief functions.
For directed graphical models, we have conditionals associated with each variable in the model given its
parents. The conditionals are all distinct if and only if if the conditional independence assumptions implied
by the graphical model are valid.
For a class of undirected graphical models, we have BPAs associated with each network clique with the
same structure. For example, all BPAs have the same structure in the communication network example.
Moreover, these BPAs are mutually non-informative. Thus, we can conclude that all BPAs in this example
are distinct.
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Questions?
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