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Logistics management
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Third-Party Logistics (3PL) Providers

* Employing 3PL companies : focus on the production of goods.

A 3PL provider : an external entity that is responsible for
management, control, and delivery of logistics activities for a
shipper (Hertz, Alfredsson, 2003).

* Example of Toyota’s inbound logistics




Three Main Activities of a 3PL

a) Order Management b) Vehicle Packing
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c¢) Vehicle Routing
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Order Management

* Consolidation strategies (vehicle, terminal, inventory)

* Load splitting

* Holding costs associated with late pickup or early delivery
* Order/supplier compatibility
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Vehicle Packing

* Volume capacity

 Stackability

e Stability

* Loading/unloading considerations

https://www.freightcenter.com/services/Itl-freight



Vehicle Routing

* Deterministic/stochastic travel time

* Service time at each node

* Time window

* Speed limits on roads

* Maximum number of stops per route



3PL FM Problem Formulation

Notation

« C={12,..,n.}:the set of n, customers

« S={1,2,..,n,}:the set of ng suppliers

« P={12,..,n,}:the set of n, products

- V={1,2,..,n,}:the set of n, vehicles

* W the set of considerations

« @ :aset containing three arbitrary data structures containing relevant order assignment
information (®4), packing information (®p), and routing information (®p)

Problem

i(]?o of productp (p € P) from the supplier j (j € S) at

timet € T,whereT = {1,2,...,n;}. The order must be delivered to customer i by the due

date t' » (denoted by t,).
Oijp

Customer i (i € C) places an order o



3PL FM Problem Formulation

®" — ASSIGN® (00, -1, )

an arbitrary procedure that assigns orders in 0® to vehicles under a particular consolidation strategy

o (o € X) using the solution strategy w (w € Q)

Y. : consolidation strategy (vehicle, inventory, or terminal consolidation)

Q : solution strategies such as dynamic programming, heuristic/metaheuristic methods, and

machine learning methods

ol 02 o3 o4 05 06 o7 08
Y : set of considerations (weight capacity, load splitting,
i
holding costs associated with late pickup or early delivery, 1 (2 €3 ¢4 (5
order/supplier compatibility, and repackaging considerations) l l l
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3PL FM Problem Formulation

dY « PACK® (P, D, y)

an arbitrary procedure for arrangement of packages in vehicles using the solution strategy w (w

€ Q)

* () :solution strategies such as dynamic programming, heuristic/metaheuristic methods, and
machine learning methods

Y :set of considerations (volume capacity, stackability,

stability, loading/unloading considerations)




3PL FM Problem Formulation

®" « ROUTE® (@, ", D, y)
an arbitrary procedure that creates a set of routes that ensure each vehicle visits the origin and
destination of the orders it carries.

* () :solution strategies such as dynamic programming, heuristic/metaheuristic methods, and

machine learning methods
Y :set of considerations (deterministic/stochastic travel -
e—e S a
time, service time at each node, time window, speed ? @
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limits on edges, and number of stops per route) o
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General Algorithm

Algorithm 1 Algorithm for solving the 3PL freight management problem

1: Input: C.S5, P, V.T,0,w. ¥
2: Initialize Q=0 $(t=0)
3: fort=1,...,T do

4:

=1

o

Y -
=

9
10):

O") «+ INCOMINGY | JO" Y

o)) « ASSIGNZ(0", 91 )

00 «— 0D\ Orders(®@'))

o) « PACK= (3 o1 ¥)

o\ « ROUTE=*(®Y, 3!} o1 v)
t (t (t

H(t) {(I)ii}f (I,“] ? ‘I’H} }

COSTY « f(@W)

11: end for
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One Instantiation

ASSIGN?® (0, (-1 )

P : Weight capacity, demand distribution (split-load not allowed)
w : Q-Learning

o : Vehicle consolidation

* Direct vs. consolidated shipment



One Instantiation

PACK® (&P, @D g
Y : One-dimensional volume constraints
w : Q-Learning
One-dimensional Packing
I Y
l{,wq, by [{ *wy * hq

lz,Wz,hz lz*Wz*hz

Lp, Wy, hy lp * wp * hy



One Instantiation

ROUTE® (", ", 1 )

Y. Weight capacity, delivery due date (¢t,)
w: Fixed routing schedule

Fixed Routlng Schedule

s1 - s2—->c3—>c5

n53—>55—>s4—>c1—>c2—>c4 1
53—>51—>52—>c1—>c3—>c5 4

Direct Shipment Vehicle

© Alswppliersandcustomers - Alldays



Some Detalls

* Arrival time and due date of each order (t,)

e Customer demands follow a distribution : Generated and discretized
to a finite set of numbers (quantization), called levels of demand (A
three-level example would be High, Medium, and Low)

* There are vehicles of the same capacity (volume and weight) to carry
the orders, and orders have different volumes and weights.



 E—

Reinforcement Learning

THE UNIVERSITY OF

KANSAS

|




Reinforcement Learning

* (State,Action,Transition Func.,Reward)

e Goal?
. : : : Agent
* Finding the optimal policy (mapping sen
from state to action) ‘
State/%eward \ction
Environment
a a a
50 0 > 57 1 >S9 2 -
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Reinforcement Learning

* Limited knowledge of the environment
= Can only act in the world and observe states and reward

e Other factors
= Actions have non-deterministic effects (which are initially unknown)

= Rewards / punishments are infrequent
* Often at the end of long sequences of actions
* World is large and complex

* Nevertheless, agent must decide what actions to take



Q-Learning

The general form of problem

* Maxr = RW
s.t. G(SW) <0

where R is the reward function at time t, G(S(t)) is the set of
constraints corresponding to the considerations in the set V.



Q-Learning

State

* The combination of customeri (i € C), productp (p € P), supplierj (j €
C), and level of demand d (d € {1,2,...,n,4}) at each time period t (t €

T),i.e.
* Sipja = @id)®

* Assuming there are ng, possible combinations of these four components
(customer, product, supplier, demand level (cpsd)), and define

. S,gt) = (cpsd,))®®  (n=1,..,ny)



Q-Learning

Action

* The vehicle v € V a cpsd is assigned to.

* Actionset (A)isA = VU {n, + 1} where n, + 1is an extra vehicle is
added to the set of vehicles to represent a direct shipment vehicle.



Q-Learning

Q-Table

* Q values: expected cumulative rewards
* 0(S,4) < Q(S,4) + a[R +ymaxQ(S',a) — Q(S,4)]

* Discount factory (0 <y < 1): the weight
of the future reward

* Learning rate ¢ (0 < ¢ < 1): to balance
between exploration and exploitation

State \ v

b2

Ny, + 1

(ecpsdy)™
(epsdy)™

(epsds )t
(epsds)™2

(epsd,, )™

(cpsd,, ., )™




Q-Learning

Reward
RO — _ (TC(t) + 7O 4 ,B(t))
« TC: total cost of transportation

e 7(8): the penalty for infeasibilities in terms of the vehicle
capacity, due date, unsatisfied demand, or assigned to a vehicle
that does not pass the corresponding origin and destination of
that cpsd

. ,B(t): the amount of barrier that is added for satisfied constraints



Q-Learning

Reward
R® = —(Tc® +7® 4 1)
. TC(t) — Zno ny+1

o=1 v=1 CO,v]lo,v

o 7(t) = (1 + Zlevc(t) @;(g(t)))f
= VCW ={G(SW)|G(5®) > 0} (violated constraints)

* lg(t) — ZlESC(t) (_log(_@]; (S(t)))
= SCW ={G(SW)|G(5®)) < 0} (satisfied constraints)



Q-Learning

Q-Learning

Sy cpsdy,

a,: vehicle
§: transition function dq d,

€4: € — greedy

A: change in Q — value v S \ S
2 3

based on the Bellman equation s, r ry
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Instance Generation and Parameter Settings

Parameter Value

e A random instance with

Neps = 9 Demand for cps,, N(u, = 1100 — (n — 1) * 100, o, = 50)
ng = Order’s arrival time U(1,[.6 *ne])
ny, = . .
ng =5 Delivery time length U(1,[.4 *n.])
* Parameters Cost Ul(jl(é’g()))f ]?'ZrCIS) S
a=.2 |
_ g e U(.2,.5) for DS
y = .9 U(1,2) for CS
€E =.
) Weight & volume Based on the demands
1000 episodes g

Q(S,4) <« Q(S,4) + a[R +ymaxQ(S’,a) — Q(S, A)]



Results — Episodes 2-170
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<10 Cumulative Reward by Episode Within-Episode Improvement in Reward
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Conclusions and Future Work

Summary

* A modular framework is proposed for the 3PL freight management
problem

 Q-Learning algorithm is shown to be able to solve an instantiation of the
problem

Future Work

* Refining the framework

* Extending to continuous state space and/or action space (continuous
demand, various consolidation strategies, 3-dimensional constraints)
* Using Deep Q-Learning
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