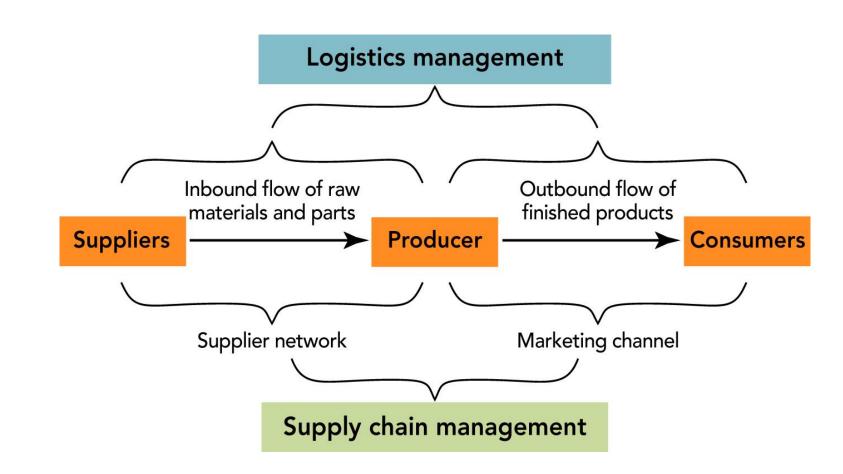
A Modular Framework for the Freight Management Problem Encountered by Third-Party Logistics Providers

Presented by : Amin Abbasi Pooya School of Business, University of Kansas

Brief Overview

- **1.** Introduction to Logistics
- 2. The General Framework for the 3PL Freight Management Problem
- 3. One Instantiation of the Problem
- 4. Reinforcement Learning1. Q-Learning
- 5. Results
- 6. Conclusions and Future Research

Introduction to Logistics

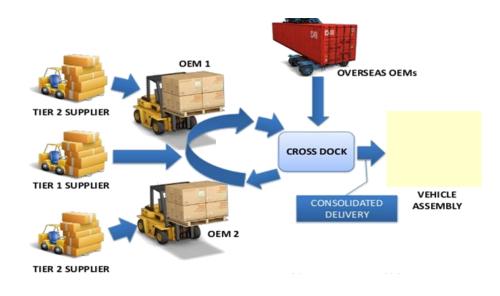


Logistics

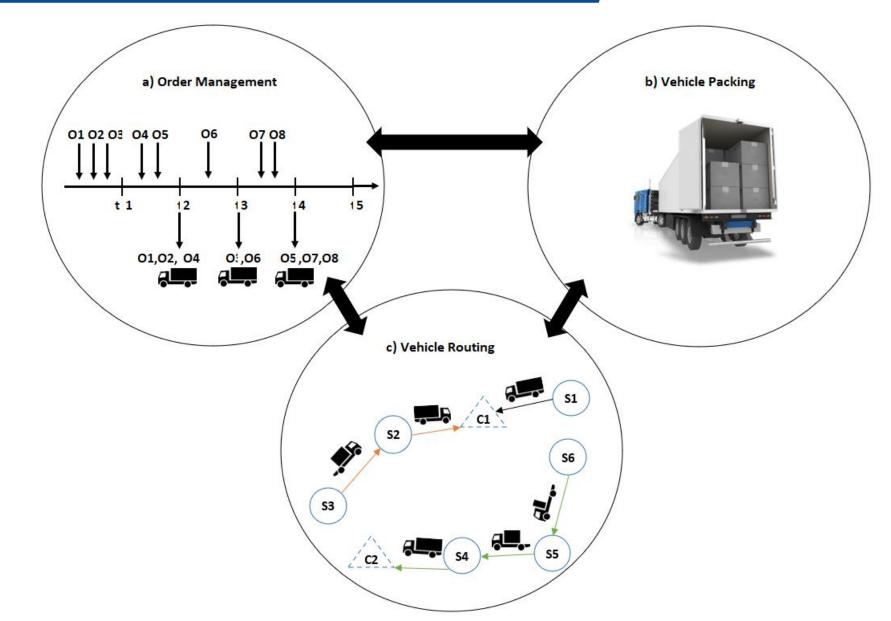
Marketing (2015), Kerin, Hartley, Rudelius

Third-Party Logistics (3PL) Providers

- Employing 3PL companies : focus on the production of goods.
- A 3PL provider : an external entity that is responsible for management, control, and delivery of logistics activities for a shipper (Hertz, Alfredsson, 2003).
- Example of Toyota's inbound logistics

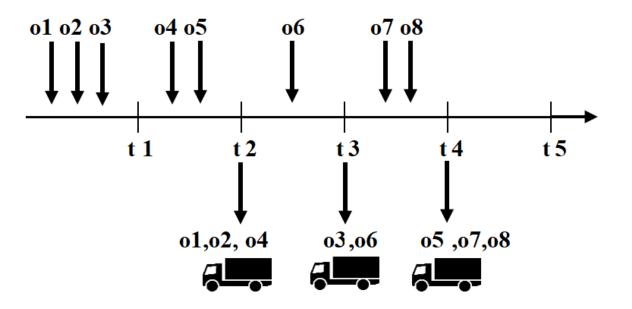


Three Main Activities of a 3PL



Order Management

- Consolidation strategies (vehicle, terminal, inventory)
- Load splitting
- Holding costs associated with late pickup or early delivery
- Order/supplier compatibility



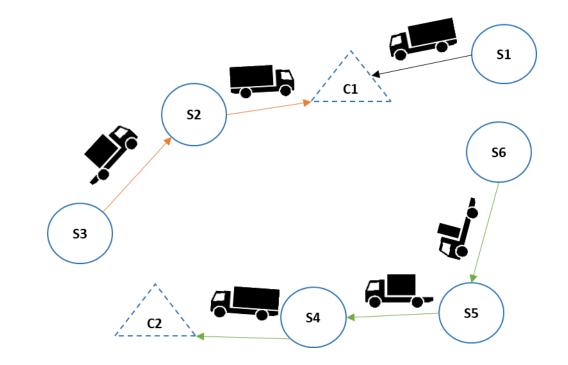
Vehicle Packing

- Volume capacity
- Stackability
- Stability
- Loading/unloading considerations

https://www.freightcenter.com/services/ltl-freight

Vehicle Routing

- Deterministic/stochastic travel time
- Service time at each node
- Time window
- Speed limits on roads
- Maximum number of stops per route



3PL FM Problem Formulation

Notation

- $C = \{1, 2, ..., n_c\}$: the set of n_c customers
- $S = \{1, 2, ..., n_s\}$: the set of n_s suppliers
- $P = \{1, 2, \dots, n_p\}$: the set of n_p products
- $V = \{1, 2, ..., n_v\}$: the set of n_v vehicles
- Ψ : the set of considerations
- Φ : a set containing three arbitrary data structures containing relevant order assignment information (Φ_A), packing information (Φ_P), and routing information (Φ_R)

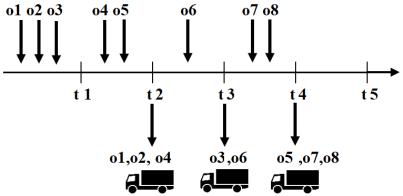
Problem

Customer $i \ (i \in C)$ places an order $o_{ijp}^{(t)}$ of product $p \ (p \in P)$ from the supplier $j \ (j \in S)$ at time $t \in T$, where $T = \{1, 2, ..., n_t\}$. The order must be delivered to customer i by the due date $t'_{o_{ijp}^{(t)}}$ (denoted by t_o).

$$\Phi_A^{(t)} \leftarrow ASSIGN_{\sigma}^{\omega} \left(\boldsymbol{O}^{(t)}, \Phi^{(t-1)}, \Psi \right)$$

an arbitrary procedure that assigns orders in $O^{(t)}$ to vehicles under a particular consolidation strategy σ ($\sigma \in \Sigma$) using the solution strategy ω ($\omega \in \Omega$)

- Σ : consolidation strategy (vehicle, inventory, or terminal consolidation)
- Ω : solution strategies such as dynamic programming, heuristic/metaheuristic methods, and machine learning methods
- Ψ : set of considerations (weight capacity, load splitting, holding costs associated with late pickup or early delivery, order/supplier compatibility, and repackaging considerations)



$$\Phi_P^{(t)} \leftarrow PACK^{\omega} \ (\Phi_A^{(t)}, \Phi^{(t-1)}, \Psi)$$

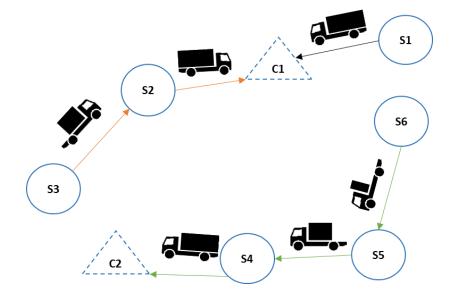
an arbitrary procedure for arrangement of packages in vehicles using the solution strategy ω ($\omega \in \Omega$)

- Ω : solution strategies such as dynamic programming, heuristic/metaheuristic methods, and machine learning methods
- Ψ : set of considerations (volume capacity, stackability, stability, loading/unloading considerations)

 $\boldsymbol{\Phi}_{R}^{(t)} \leftarrow \textit{ROUTE}^{\omega} \, (\boldsymbol{\Phi}_{A}^{(t)}, \boldsymbol{\Phi}_{P}^{(t)}, \boldsymbol{\Phi}^{(t-1)}, \boldsymbol{\Psi})$

an arbitrary procedure that creates a set of routes that ensure each vehicle visits the origin and destination of the orders it carries.

- Ω : solution strategies such as dynamic programming, heuristic/metaheuristic methods, and machine learning methods
- Ψ : set of considerations (deterministic/stochastic travel time, service time at each node, time window, speed limits on edges, and number of stops per route)



Algorithm 1 Algorithm for solving the 3PL freight management problem

1: Input:
$$C, S, P, V, T, \sigma, \omega, \Psi$$

2: Initialize $O^{(t=0)}, \Phi^{(t=0)}$
3: for $t = 1, ..., T$ do
4: $O^{(t)} \leftarrow INCOMING^{(t)} \bigcup O^{(t-1)}$
5: $\Phi_A^{(t)} \leftarrow ASSIGN_{\sigma}^{\omega}(O^{(t)}, \Phi^{(t-1)}, \Psi)$
6: $O^{(t)} \leftarrow O^{(t)} \setminus Orders(\Phi_A^{(t)})$
7: $\Phi_P^{(t)} \leftarrow PACK^{\omega}(\Phi_A^{(t)}, \Phi^{(t-1)}, \Psi)$
8: $\Phi_R^{(t)} \leftarrow ROUTE^{\omega}(\Phi_A^{(t)}, \Phi_P^{(t)}, \Phi^{(t-1)}, \Psi)$
9: $\Phi^{(t)} \leftarrow \{\Phi_A^{(t)}, \Phi_P^{(t)}, \Phi_R^{(t)}\}$
10: $COST^{(t)} \leftarrow f(\Phi^{(t)})$
11: end for

The 3PL Freight Management Problem with Fixed Routing Schedule and 1-Dimensional Packing

$ASSIGN_{\sigma}^{\omega}\left(\boldsymbol{0}^{(t)},\boldsymbol{\Phi}^{(t-1)},\boldsymbol{\Psi}\right)$

- Ψ : Weight capacity, demand distribution (split-load not allowed)
- $\boldsymbol{\omega}$: Q-Learning
- $\pmb{\sigma}:$ Vehicle consolidation
- Direct vs. consolidated shipment

One Instantiation

PACK^ω ($\Phi_{A}^{(t)}$, $\Phi^{(t-1)}$, Ψ)

 Ψ : One-dimensional volume constraints

 $\boldsymbol{\omega}$: Q-Learning

One-dimensional Packing

Product	Package Dimensions	Volume
1	l_1, w_1, h_1	$l_1 * w_1 * h_1$
2	l_2, w_2, h_2	$l_2 * w_2 * h_2$
n_p	l_p , w_p , h_p	$l_p * w_p * h_p$

ROUTE^{ω} ($\Phi_A^{(t)}$, $\Phi_P^{(t)}$, $\Phi^{(t-1)}$, Ψ) Ψ : Weight capacity, delivery due date (t_o) ω : Fixed routing schedule **Fixed Routing Schedule**

Vehicle	Route	Available day
1	$s1 \rightarrow s2 \rightarrow c3 \rightarrow c5$	2
2	$s3 \rightarrow s5 \rightarrow s4 \rightarrow c1 \rightarrow c2 \rightarrow c4$	1
n_v	$s3 \rightarrow s1 \rightarrow s2 \rightarrow c1 \rightarrow c3 \rightarrow c5$	4

Direct Shipment Vehicle

$n_v + 1$	All suppliers and customers	All days
		-

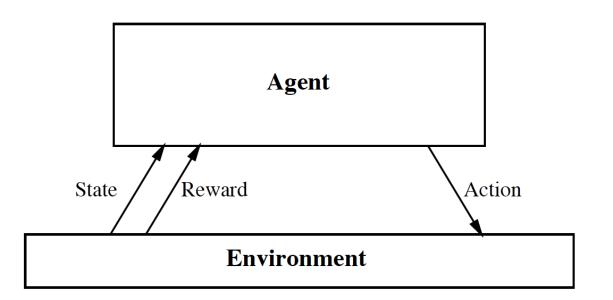
Some Details

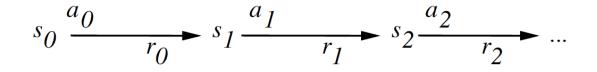
- Arrival time and due date of each order (t_o)
- Customer demands follow a distribution : Generated and discretized to a finite set of numbers (quantization), called levels of demand (A three-level example would be High, Medium, and Low)
- There are vehicles of the same capacity (volume and weight) to carry the orders, and orders have different volumes and weights.

Reinforcement Learning

Reinforcement Learning

- (State, Action, Transition Func., Reward)
- Goal?
 - Finding the optimal policy (mapping from state to action)





Reinforcement Learning

- Limited knowledge of the environment
 - Can only act in the world and observe states and reward
- Other factors
 - Actions have non-deterministic effects (which are initially unknown)
 - Rewards / punishments are infrequent
 - Often at the end of long sequences of actions
 - World is large and complex
- Nevertheless, agent must decide what actions to take

The general form of problem

• $Max r = R^{(t)}$ s.t. $\mathbb{G}(S^{(t)}) \leq 0$

where $R^{(t)}$ is the reward function at time t, $\mathbb{G}(S^{(t)})$ is the set of constraints corresponding to the considerations in the set Ψ .

State

• The combination of customer $i \ (i \in C)$, product $p \ (p \in P)$, supplier $j \ (j \in C)$, and level of demand $d \ (d \in \{1, 2, ..., n_d\})$ at each time period $t \ (t \in T)$, i.e.

•
$$S_{i,p,j,d}^{(t)} = (ipjd)^{(t)}$$

• Assuming there are $n_{\{st\}}$ possible combinations of these four components (customer, product, supplier, demand level (cpsd)), and define

•
$$S_n^{(t)} = (cpsd_n)^{(t)}$$
 $(n = 1, ..., n_{st})$

Action

• The vehicle $v \in V$ a cpsd is assigned to.

• Action set (A) is $A = V \cup \{n_v + 1\}$ where $n_v + 1$ is an extra vehicle is added to the set of vehicles to represent a direct shipment vehicle.

Q-Table

- Q values: expected cumulative rewards
- $Q(S,A) \leftarrow Q(S,A) + \alpha[R + \gamma \max_{a} Q(S',a) Q(S,A)]$
- Discount factor γ (0 < γ < 1): the weight of the future reward
- Learning rate α (0 < α < 1): to balance between exploration and exploitation

$State \setminus v$	1	2	 n_v	$n_v + 1$
$(cpsd_1)^{t_1}$				
$(cpsd_1)^{t_2}$				
$(cpsd_2)^{t_1}$				
$(cpsd_2)^{t_2}$				
$(cpsd_{n_{st}})^{t_1}$				
$(cpsd_{n_{st}})^{t_2}$				

Reward

- $R^{(t)} = -(TC^{(t)} + \pi^{(t)} + \beta^{(t)})$
 - $TC^{(t)}$: total cost of transportation
 - π^(t): the penalty for infeasibilities in terms of the vehicle capacity, due date, unsatisfied demand, or assigned to a vehicle that does not pass the corresponding origin and destination of that *cpsd*
 - $\beta^{(t)}$: the amount of barrier that is added for satisfied constraints

Reward

$$\begin{aligned} R^{(t)} &= -(TC^{(t)} + \pi^{(t)} + \beta^{(t)}) \\ &\cdot TC^{(t)} = \sum_{o=1}^{n_o} \sum_{v=1}^{n_v+1} c_{o,v} \mathbb{1}_{o,v} \\ &\cdot \pi^{(t)} = (1 + \sum_{l \in VC^{(t)}} \mathbb{G}'_l(S^{(t)}))^{\xi} \\ &\cdot VC^{(t)} = \{\mathbb{G}(S^{(t)}) | \mathbb{G}(S^{(t)}) > 0\} \text{ (violated constraints)} \\ &\cdot \beta^{(t)} = \sum_{l \in SC^{(t)}} (-\log(-\mathbb{G}'_l(S^{(t)})) \\ &\cdot SC^{(t)} = \{\mathbb{G}(S^{(t)}) | \mathbb{G}(S^{(t)}) \leq 0\} \text{ (satisfied constraints)} \end{aligned}$$

Q-Learning

 s_n : cpsd_n a_v : vehicle δ : transition function ϵ_g : ϵ – greedy Δ : change in Q – value

based on the Bellman equation

Agent $Q(s_1, a) = 0$ $Q(s_1, a_1) \leftarrow Q(s_1, a_1) + \Delta$ $\epsilon_g(s_1) = a_1$ $\epsilon_a(s_2) = a_2$ a_1 **a**₂ **S**₂ S₃ r_2 S_1 r₃ $\delta(s_1, a_1) = s_2$ $\delta(s_2, a_2) = s_3$ $r(s_1, a_1) = r_2$ $r(s_2, a_2) = r_3$ **Environment**

Results

Instance Generation and Parameter Settings

• A random instance with

 $n_{cps} = 9$ $n_t = 7$ $n_v = 6$ $n_d = 5$

• Parameters

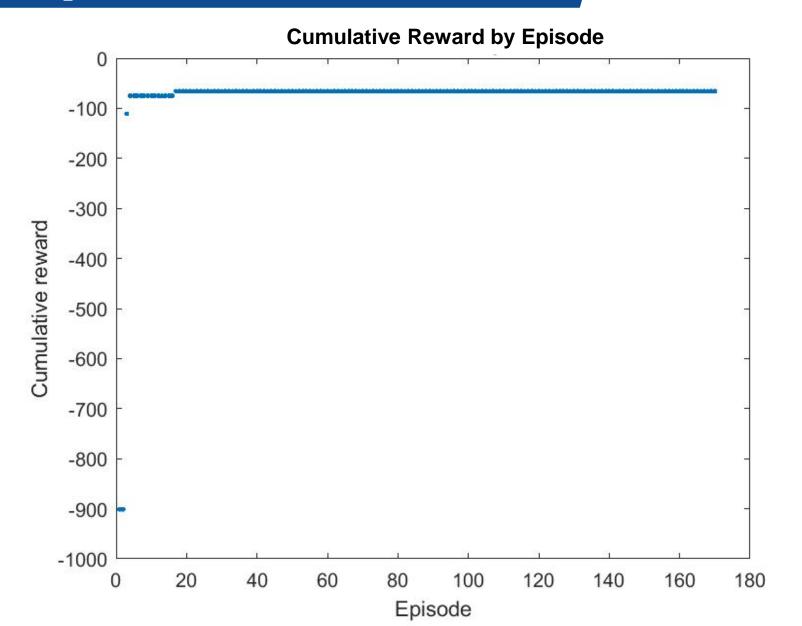
 $\alpha = .2$ $\gamma = .8$ $\epsilon = .9$ 1000 episodes

1000 episones

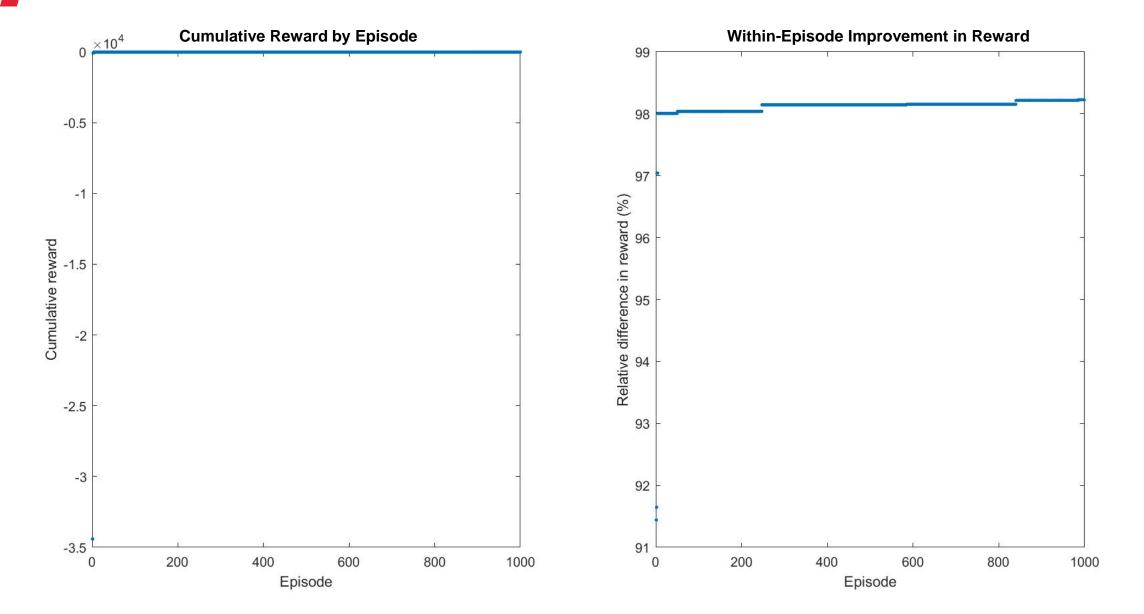
Parameter	Value	
Demand for cps_n	$N(\mu_n = 1100 - (n - 1) * 100, \sigma_n = 50)$	
Order's arrival time	$U(1, [.6 * n_t])$	
Delivery time length	$U(1, [.4 * n_t])$	
Cost	U(1,4) for CS U(10,20) for DS	
Time	U(.2,.5) for DS U(1,2) for CS	
Weight & volume	Based on the demands	

 $Q(S,A) \leftarrow Q(S,A) + \alpha[R + \gamma \max_a Q(S',a) - Q(S,A)]$

Results – Episodes 2-170



Results



Conclusions and Future Research

Conclusions and Future Work

Summary

- A modular framework is proposed for the 3PL freight management problem
- Q-Learning algorithm is shown to be able to solve an instantiation of the problem

Future Work

- Refining the framework
- Extending to continuous state space and/or action space (continuous demand, various consolidation strategies, 3-dimensional constraints)
- Using Deep Q-Learning

OUR CHANT RISES

Icons designed by Madebyoliver from Flaticon.