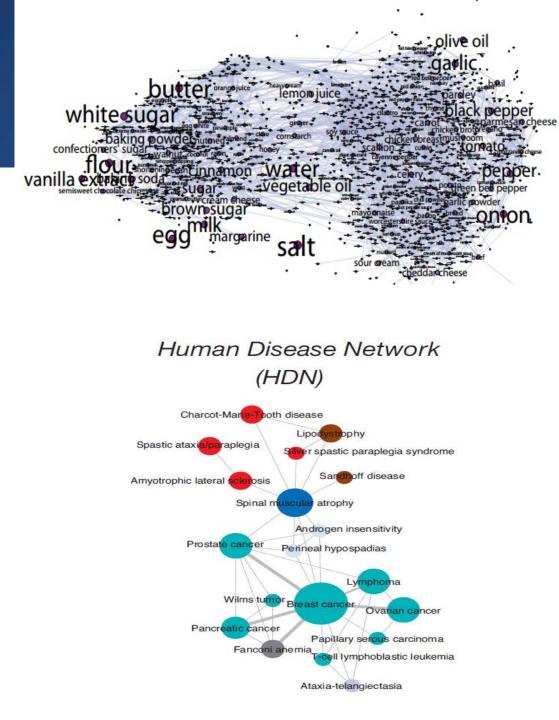
Traps: Identifying Mortality-related Cliques in Comorbidity Network

Pankush Kalgotra, PhD Assistant Professor of Business Analytics Department of Business Analytics and Information Systems Harbert College of Business Auburn University


1

Network Science

- Network method nodes and relationships
 - Explicit Networks (Facebook Network)
 - Implicit/Inferred Networks (Comorbidity Network)

- Implicit Network
- Relationships are inferred similarity index

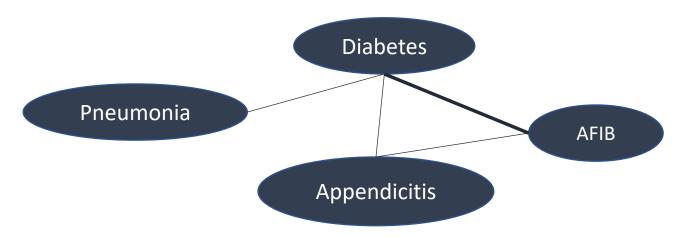
Network analytics research

Link predictions

Information diffusion

Sample the network

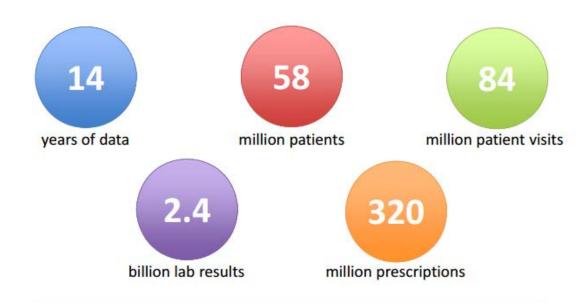
Impact of network on its nodes, which are internal to the network


Recommendation engine

Limited work on understanding the impact of network on exogenous outcomes

Comorbidity Network

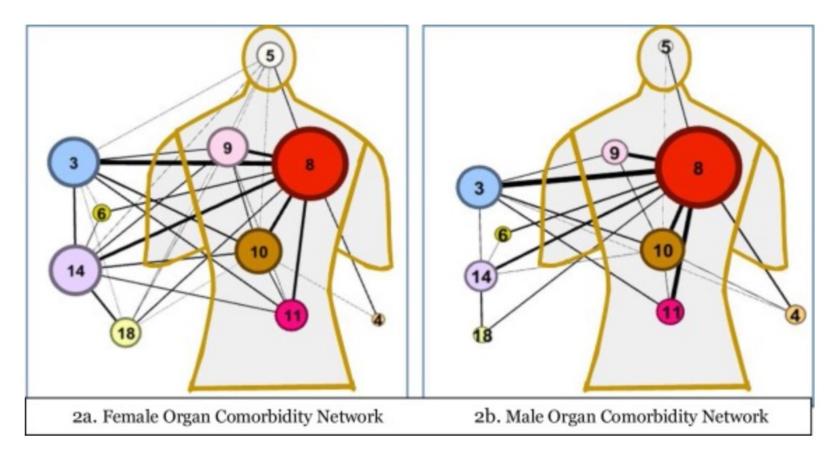
- Network of diseases comorbidity network
 - diseases linked to each other based on co-occurrences in patients (comorbidity)
 - Node: a disease (diagnosis)
 - Edge: comorbidity/co-occurrence



Dataset

- Electronic medical records (EMR) Patient history
- Cerner database
 - more than 50 million patients' visits
- Disease is measured in ICD-9-CM codes

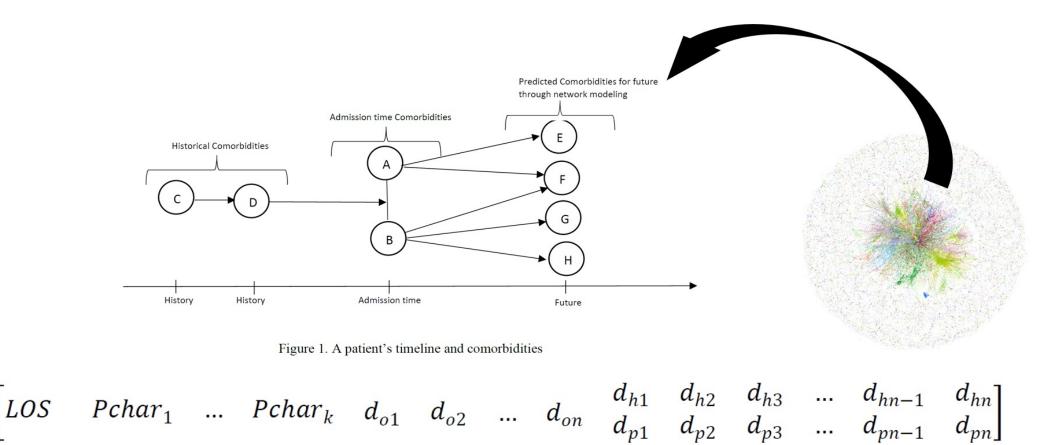
428 Heart failure


- 428.0 Congestive heart failure, unspecified
- 428.1 Left heart failure
- 428.2 Systolic heart failure
- 428.20 Systolic heart failure, unspecified
- 428.21 Acute systolic heart failure
- → 428.22 Chronic systolic heart failure
- 428.23 Acute on chronic systolic heart failure

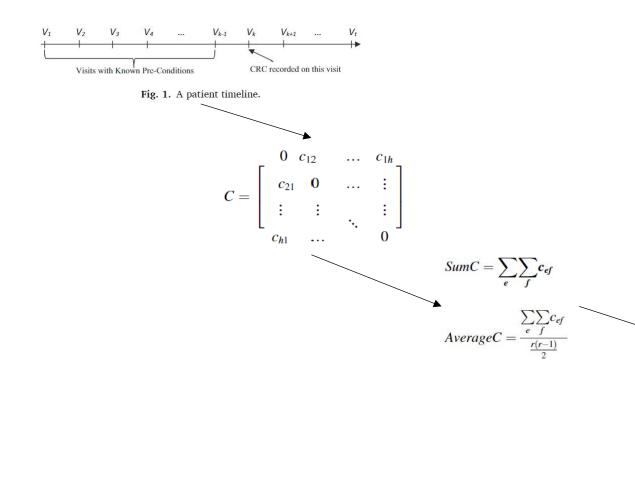
Data Covers The Entire United States!!!

Descriptive Analytics

• Kalgotra, P., Sharda, R., & Croff, J. M. (2017). Examining health disparities by gender: a multimorbidity network analysis of electronic medical record. *International journal of medical informatics*, *108*, 22-28.


Descriptive Analytics

Kalgotra, P., Sharda, R., & Croff, J. M. (2020). Examining multimorbidity differences across racial groups: a network analysis of electronic medical records. *Nature Scientific Reports*, 10(1), 1-9.


Predictive Analytics

Kalgotra, P., & Sharda, R. (2021). When will I get out of the Hospital? Modeling length of stay using comorbidity networks. *Journal of Management Information Systems*, 38(4), 1150-1184.

Predictive Analytics

Kalgotra, P., Sharda, R., Parasa, S. (2023). Quantifying Disease-Interactions through Co-occurrence Matrices to Predict Early Onset Colorectal Cancer. Decision Support Systems. In Press.

- Created classification models for early-onset colorectal cancer (EoCRC)
- Proposed novel disease interaction variables
- Created score variables to estimate the risk of EoCRC
- Models can help in prescribing colonoscopy screening

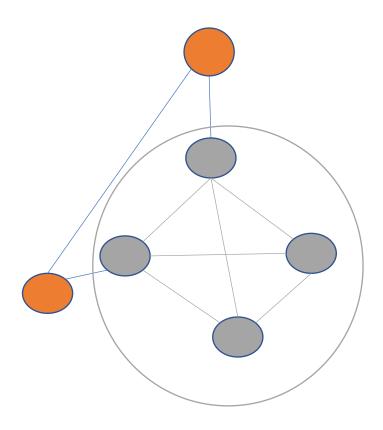
Model	Accuracy (%), SD	AUC, SD	Sensitivity, (%), SD	Specificity, (%), SD
Model 1: Age	67.5, 0.5	0.73, 0.01	71.1, 1.8	64.0, 1.8
Model 2: Age, Dem	68.5, 0.6	0.74, 0.01	72.1, 1.7	64.9, 1.7
Model 3: Age, Dem, Sym	72.5, 0.6	0.80, 0.01	73.6, 1.1	71.5, 1.5
Model 4: Age, Dem, DI	70.5, 0.6	0.77, 0.01	73.4, 0.8	67.6, 1.1
Model 5: Sym	67.5, 0.6	0.73, 0.01	60.6, 2.2	74.4, 2.6
Model 6: DI	67.0, 0.5	0.72, 0.01	65.7, 1.0	68.3, 1.4
Model 7: Age, Dem, Sym, DI	73.2, 0.4	0.81, 0.01	75.3, 0.6	71.1, 0.8

Traps: Identifying Mortality-related Cliques in Comorbidity Network

Pankush Kalgotra and Ramesh Sharda

Introduction

- Hidden combination of actions/activities impact the outcomes
- Combination of
 - actors in a movie impact movie success
 - authors in a paper impact citation count
 - drugs impact a patient's outcomes
 - diseases impact a patient's outcomes


- To model combinations
- To develop a method to find hidden combinations related to an outcome in a situation

Solution

- Network Theory to model combinations
 - Latent Network
 - Identifying Cliques in the network, which are highly related to an outcome

Clique

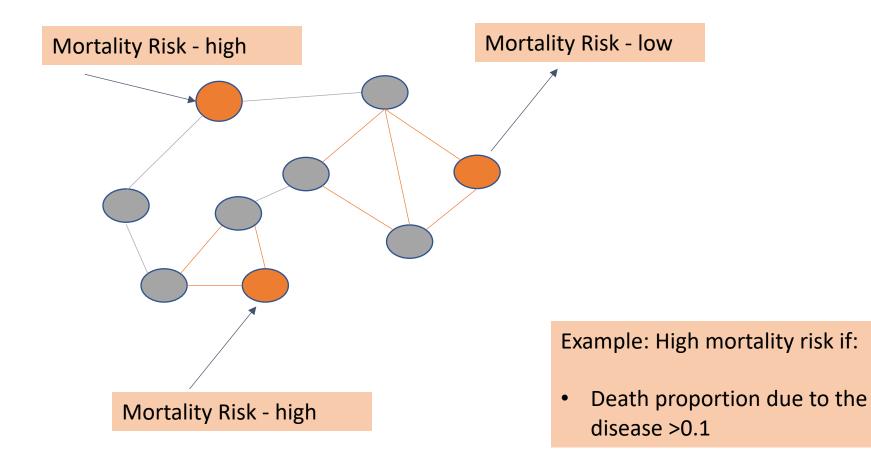
- Sub-network: all individuals know each other (complete structure)
- Implications on the performance -trust, norms and obligations (Coleman, 1988)
- Provan and Sebastian (1998) cliques are positively related to the network effectiveness

Demonstration: Mortality related Cliques

- Causes of mortality diseases, actually multiple diseases
- Direct and indirect interactions of diseases may be related to mortality
- Which combinations of diseases are critical?

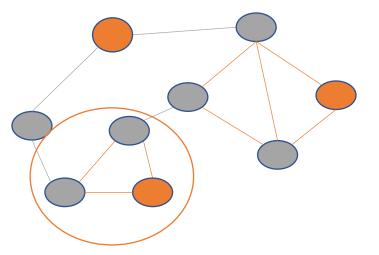
Demonstration: Mortality related Cliques

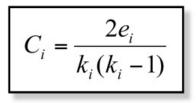
- Network of diseases comorbidity network
- Diseases linked to each other based on co-occurrences in patients- Salton Cosine Index


$$SCI_{ij} = \frac{(c_{ij})}{\sqrt{(c_i * c_j)}}$$

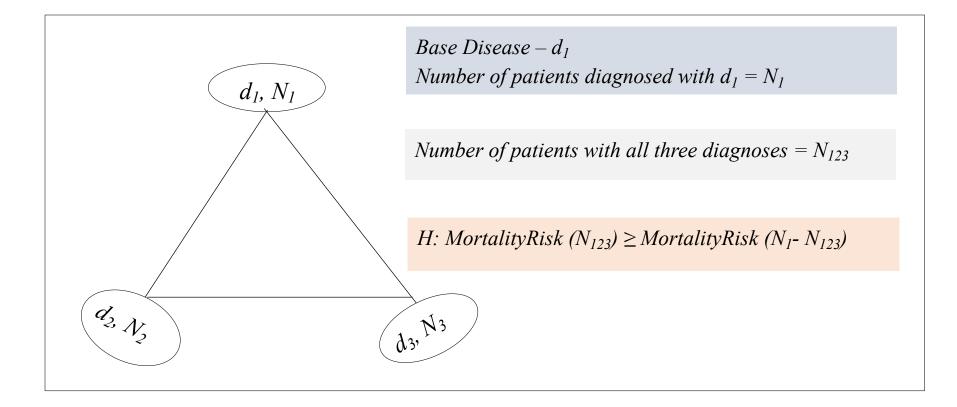
- Dataset: Cerner Electronic Medical Records (2000-2015)
 - 24.7 M Patients
 - 1,043 unique diagnoses & symptoms
 - 23,313 edges
 - 4.46% dense

$$D_{nXn} = \begin{bmatrix} 0 & w_{12} & \dots & w_{1n} \\ w_{21} & 0 & \dots & \vdots \\ \vdots & \vdots & \ddots & \vdots \\ w_{n1} & \dots & 0 \end{bmatrix}$$

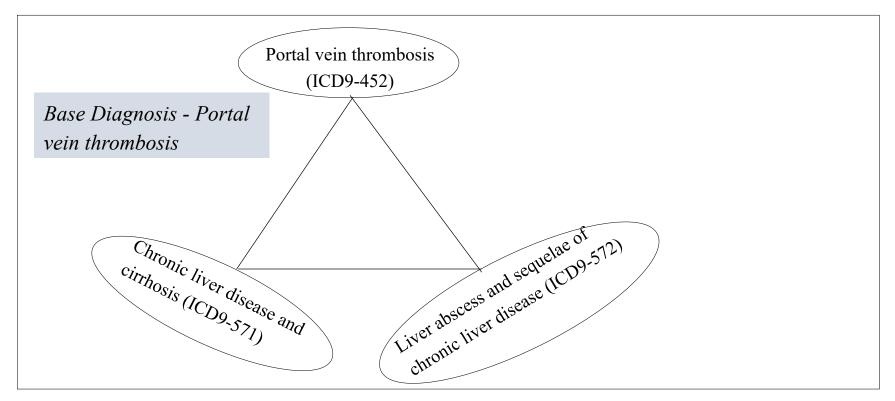

Algorithm


• Step 1: Identify high risk diseases

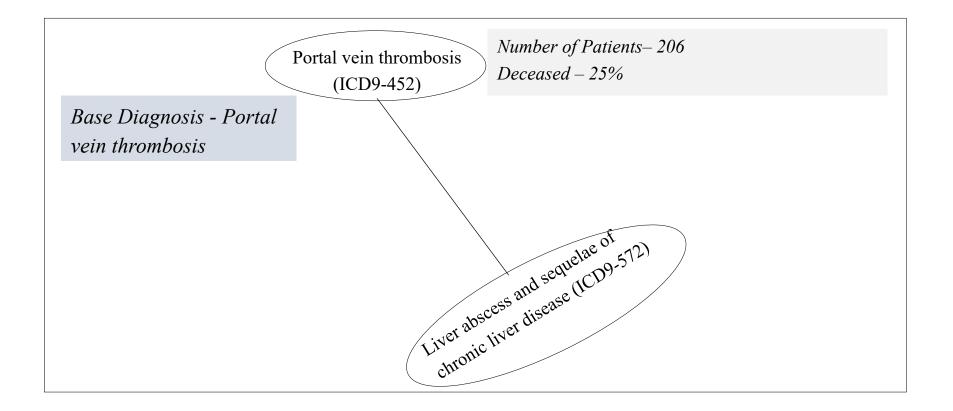
Algorithm

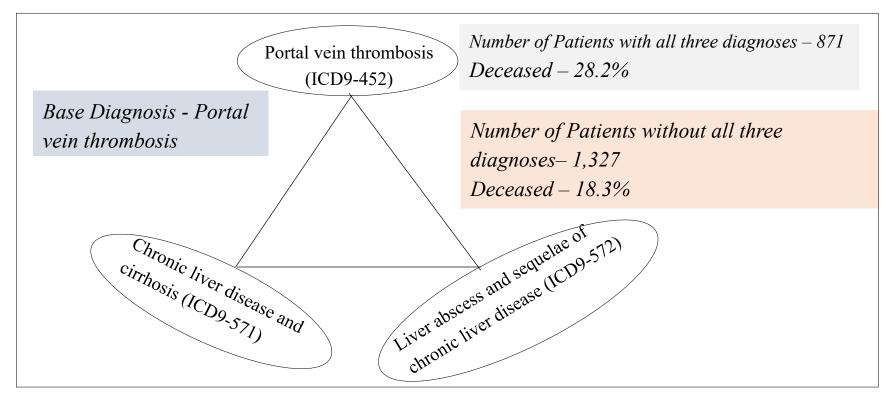

• Step 2: Find the maximal clique using Clustering Coefficient




- Step 3: Compute and compare the mortality risk with and without a clique
 - *H: MortalityRisk (N123) ≥ MortalityRisk (N1- N123)*

Clique in a comorbidity network

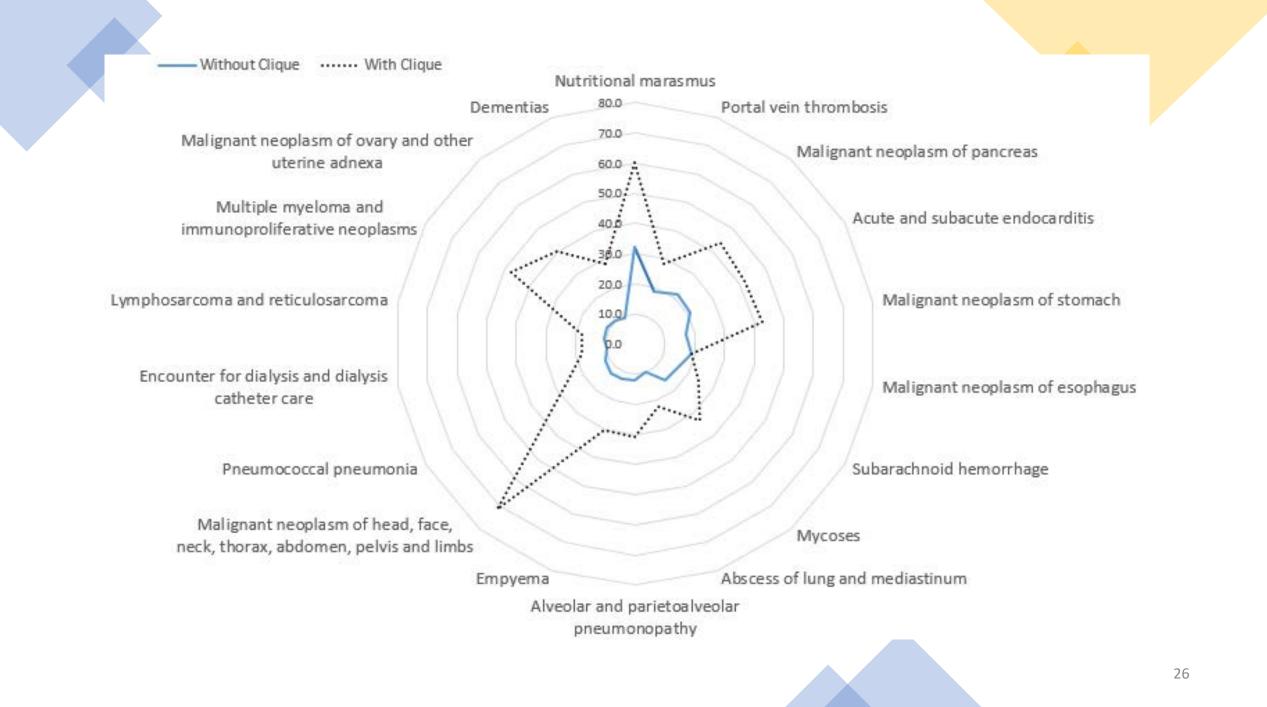




A clique/triangle of three diseases with their joint impact on mortality

	Portal vein thrombosis (ICD9-452) Number of Patients– 836 Deceased – 16%	
Base Diagnosis - Portal vein thrombosis		

Portal vein thrombosis (ICD9-452)	Number of Patients– 285 Deceased – 19%
Base Diagnosis - Portal vein thrombosis	
Chronic liver disease and cirrhosis (ICD9-571)	

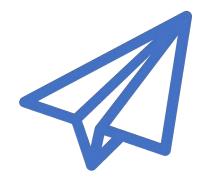


A clique/triangle of three diseases with their joint impact on mortality

Mortality rate with and without cliques									
ICD-9	Description	Clique Size	Patient count	Mortality rate	Patient count	Mortality rate			
			w/o Clique	w/o a clique (%)	with Clique	with clique (%)			
261*	Nutritional marasmus	13	3,725	32.0	30	60			
452*	Portal vein thrombosis	3	1,327	18.3	871	28.2			
157*	Malignant neoplasm of pancreas	7	5,808	21.5	73	43.8			
421*	Acute and subacute endocarditis	15	3,760	21.2	67	41.8			
151*	Malignant neoplasm of stomach	3	2,968	17.1	427	42.9			
150	Malignant neoplasm of esophagus	3	2,772	18.8	905	19.0			
430*	Subarachnoid hemorrhage	4	5,520	16.0	192	24.0			
117*	Mycoses	16	6,558	15.6	21	33.3			
513*	Abscess of lung and mediastinum	3	1,513	9.8	659	22.2			
516*	Alveolar and parietoalveolar pneumonopathy	6	4,013	12.0	201	30.8			
510*	Empyema	9	3,985	12.1	151	30.5			
	Malignant neoplasm of head, face, neck, thorax, abdomen,		6,096	12.6					
195*	pelvis and limbs	12			14	71.4			
481*	Pneumococcal pneumonia	8	4,098	11.6	160	26.3			
V56*	Encounter for dialysis and dialysis catheter care	9	2,074	9.5	628	18.2			
200*	Lymphosarcoma and reticulosarcoma	5	3,845	10.5	375	18.1			
203*	Multiple myeloma and immunoproliferative neoplasms	12	5,843	10.8	19	47.4			
183*	Malignant neoplasm of ovary and other uterine adnexa	7	6,929	10.2	142	40.1			
290*	Dementias	8	4,305	9.5	152	28.3			

12

Discussion/Contributions


- Structural property to theorize important health outcome
- Preemptive action required if a clique is found
- Identified maximal clique but some diagnoses might be redundant
- Clique/combination of event as a trap
- Outcome related cliques algorithmic contribution
- Theorize phenomenon using network properties
- Method applicable to problems where latent interactions affect an outcome

Current status

- Presented at Informs conference
- Creating an optimization model

Acknowledgements

This work was conducted with data from the Cerner Corporation's Health Facts database of electronic medical records provided by the Oklahoma State University Center for Health Systems Innovation (CHSI). Any opinions, findings, and conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views of the Cerner Corporation.

Email: pzk0031@auburn.edu

Thank You